Skip to main content

Ion Transport by Turtle Colon: A Role for Volume-Sensing Transporters in the Basolateral Membrane

  • Chapter
  • 33 Accesses

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 16))

Abstract

It is now widely appreciated that cells have evolved a variety of mechanisms for regulating intracellular composition. Prominent among these are a wide range of so-called volume regulatory mechanisms which permit the cell to adjust its solute composition, and hence its water content, in the face of potentially injurious changes in extracellular osmolarity. Lymphocytes, for example, possess well-characterized transport mechanisms that, when activated, promote solute loss or gain and resist osmotically induced cell swelling or shrinking (Grinstein et al. 1984). Epithelial cells face an additional hazard, the “other problem” which is encountered as a direct result of high rates of transcellular solute movement. The cell must be protected from the potentially enormous changes in cell composition which could result if solute influx and efflux become “unbalanced”. Schultz (1981) has used the graphic term “flush through” to describe the problem confronting salt-transporting epithelial cells. It is likely, given the extremes of throughput encountered by epithelial cells, that they have evolved a variety of mechanisms for avoiding the disaster of “flush through”. In this review we will consider two components of a potential volume regulatory mechanism which we have found to be prominent in the cells of the reptilian colon, a basolateral K+ conductance (Dawson 1987; Dawson and Chang 1990) and a basolateral Na/H antiporter (Post and Dawson 1992). Although it is a bit presumptuous to refer to these as volume “sensors”, it is clear that both are activated (or inactivated) by changes in cell volume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronson PS (1985) Kinetic properties of the plasma membrane Na+-H+ exchanger. Annu Rev Physiol 47: 545–560

    Article  CAS  PubMed  Google Scholar 

  • Aronson PS, Nee J, Suhm MA (1982) Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature 299: 161–163

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242: 50–61

    Article  CAS  PubMed  Google Scholar 

  • Chang D, Dawson DC (1988) Digitonin-permeabilized colonic cell layers. Demonstration of calcium-activated K+ and Cl conductances. J Gen Physiol 92: 281–306

    Article  CAS  PubMed  Google Scholar 

  • Chang D, Kushman NL,Dawson DC (1991) Intracellular pH regulates basolateral K+ and Cl- conductances in colonic epithelial cells by modulating Ca2+ activation. J Gen Physiol 98: 183–196

    Article  CAS  PubMed  Google Scholar 

  • Cliff WH, Frizzell RA (1990) Separate CI- conductances activated by cAMP and Ca2+ in Cl--secreting epithelial cells. Proc Natl Acad Sci USA 87: 4956–4960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson DC (1987) Properties of epithelial potassium channels. In: Bronner F, Kleinzeller A (eds) Giebisch G (guest ed) Current topics in membranes and transport. Potassium transport: physiology and pathophysiology, vol 28. Academic Press, New York, pp 41–71

    Chapter  Google Scholar 

  • Dawson DC (1991) Principles of membrane transport. In: Schultz SG (section ed) Field M, Frizzell RA (volume eds) Rauner BB (executive ed) Handbook of physiology. Section 6. The gastrointestinal system. Vol IV. Intestinal absorption and secretion. American Physiological Society, Bethesda, MD, pp 1–44

    Google Scholar 

  • Dawson DC, Chang D (1990) Turtle colon: keeping track of transporters in the apical and basolateral membranes. In: Fleischer S, Fleischer B (eds) Methods in enzymology, vol 192, Biomembranes: Part W. Cellular and subcellular transport: epithelial cells. Academic Press, New York, pp 734–745

    Chapter  Google Scholar 

  • Dawson DC, Richards NW (1990) Basolateral K conductance: role in regulation of NaCI absorption and secretion. Am J Physiol 259: C181 - C195

    CAS  PubMed  Google Scholar 

  • Dawson DC, Van Driessche W, Hetman SI (1988) Osmotically induced basolateral K+ conductance in turtle colon: lidocaine-induced K+ channel noise. Am J Physiol 254: C165–74

    CAS  PubMed  Google Scholar 

  • Dawson DC, Wilkinson DJ, Richards NW (1990) Basolateral K channel noise: signals from the dark side. In: Bronner F. (ed) Helman S, Van Driessche W (guest eds) Current topics in membrane and transport, vol 37, Channels and noise in epithelial tissues. Academic Press, New York, pp 191–212

    Google Scholar 

  • Diamond JM (1982) Transcellular cross-talk between epithelial cell membranes. Nature 300: 683–685

    Article  CAS  PubMed  Google Scholar 

  • Foskett JK (1990) [Ca2+] modulation of Cl content controls cell volume in single salivary acinar cells during fluid secretion. Am J Physiol 259: C990–C1004

    Google Scholar 

  • Fröhlich O, Gunn RB (1986) Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system. Biochem Biophysica Acta 864: 169–194

    Article  Google Scholar 

  • Germann WJ, Ernst SA, Dawson DC (1986a) Resting and osmotically induced basolateral K conductances in turtle colon. J Gen Physiol 88: 253–74

    Article  CAS  PubMed  Google Scholar 

  • Germann WJ, Lowy ME, Ernst SA, Dawson DC (1986b) Differentiation of two distinct K conductances in the basolateral membrane of turtle colon. J Gen Physiol 88: 237–51

    Article  CAS  PubMed  Google Scholar 

  • Grinstein S, Rothstein A (1986) Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol 90: 1–12

    Article  CAS  PubMed  Google Scholar 

  • Grinstein S, Rothstein A, Sarkadi B, Gelfand EW (1984) Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol 246: C204 - C215

    CAS  PubMed  Google Scholar 

  • Harris S, Richards NW, Logsdon CD, Pouyssegur J, Dawson DC (1992) Cloning of partial cDNAs homologous to the human NHE-1 antiporter from reptilian colon. J Gen Physiol (in press)

    Google Scholar 

  • Harvey BJ, Ehrenfeld J (1988) Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductances in frog skin epithelium. J Gen Physiol 92: 793–810

    Article  CAS  PubMed  Google Scholar 

  • Harvey BJ, Thomas SR, Ehrenfeld J (1988) Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium. J Gen Physiol 92: 767–791

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in the nerve. J Physiol (Lond) 117: 500–544

    CAS  Google Scholar 

  • Hodgkin AL, Keynes RD (1955) The potassium permeability of a giant nerve fiber. J Physiol (Lond) 128: 61–88

    CAS  Google Scholar 

  • Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250: 533–538

    Article  CAS  PubMed  Google Scholar 

  • Kaplan J, Pring M, Passow H (1983) Band-3 protein-mediated anion conductance of the red cell membrane. Slippage vs ionic diffusion. FEBS Lett 156: 175–179

    Article  CAS  PubMed  Google Scholar 

  • Kirk KL, Dawson DC (1983) Basolateral potassium channel in turtle colon: evidence for single-file ion flow. J Gen Physiol 82: 297–313

    Article  CAS  PubMed  Google Scholar 

  • Kleyman T, Cragoe EJ Jr (1988) Amiloride and amiloride analogues as tools in the study of ion transport. J Membr Biol 105: 1–21

    Article  CAS  PubMed  Google Scholar 

  • Knauf PA, Law FY, Marchant PJ (1983) Relationship of net chloride flow across human erythrocyte membrane to the anion exchange mechanism. J Gen Physiol 81: 95–126

    Article  CAS  PubMed  Google Scholar 

  • Knickelbein RG, Aronson P, Dobbins JW (1990) Characterization of Na-H exchangers on villus cells in rabbit ileum. Am J Physiol 259: G802 — G806

    CAS  PubMed  Google Scholar 

  • Läuger P (1987) Dynamics of ion transport systems in membranes. Physiol Rev 67: 1296–1326

    PubMed  Google Scholar 

  • Lechleiter J, Girard S, Peralta E, Clapham D (1991) Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252: 123–126

    Article  CAS  PubMed  Google Scholar 

  • Palmer LG, Sackin H (1988) Regulation of renal ion channels. FASEB J 2: 3061–3065

    CAS  PubMed  Google Scholar 

  • Post MA, Dawson DC (1992) Basolateral Na/H antiporter: uncoupled Na transport produce an amiloride-sensitive conductance. Am J Physiol 262: C1089 - C1094

    CAS  PubMed  Google Scholar 

  • Richards NW, Dawson DC (1986) Single potassium channels blocked by lidocaine and quinidine in isolated turtle colon epithelial cells. Am J Physiol 251: C85 - C89

    CAS  PubMed  Google Scholar 

  • Richards NW, Wilkinson DJ, Logsdon CD, Dawson DC (1991) Expression of amiloride-sensitive Na+ channels from turtle colon in Xenopus Oocytes FASEB J 5: A689

    Google Scholar 

  • Sachs F (1987) Baroreceptors at the cellular level. Fed Proc 46: 12–16

    CAS  PubMed  Google Scholar 

  • Sardet C, Franchi A, Pouysségur J (1989) Molecular cloning primary structure and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56: 271–280

    Article  CAS  PubMed  Google Scholar 

  • Sariban-Sohraby S, Burg M, Turner RJ (1983) Apical sodium uptake in toad kidney epithelial cell line A6. Am J Physiol 245: C167 - C171

    CAS  PubMed  Google Scholar 

  • Schultz SG (1981) Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through”. Am J Physiol 241: F579–90

    CAS  PubMed  Google Scholar 

  • Schultz SG, Hudson RL (1986) How do sodium-absorbing cells do their job and survive? News Physiol Sci 1: 185–189

    CAS  Google Scholar 

  • Tsien RY (1988) Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends Neurosci 11: 419–424

    Article  CAS  PubMed  Google Scholar 

  • Venglarik CJ, Dawson DC (1986) Cholinergic regulation of Na absorption by turtle colon: role of basolateral K conductance. Am J Physiol 251: C563–70

    CAS  PubMed  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171: 737–738

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson D, Dawson DC (1990) Cholinergic modulation of apical Na+ channels in turtle colon: analysis of CDPC-induced fluctuations. Am J Physiol 259: C668 - C674

    CAS  PubMed  Google Scholar 

  • Zagotta WN, Hoshi T, Aldrich RW (1990) Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250: 568–571

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dawson, D.C., Post, M.A. (1993). Ion Transport by Turtle Colon: A Role for Volume-Sensing Transporters in the Basolateral Membrane. In: Clauss, W. (eds) Ion Transport in Vertebrate Colon. Advances in Comparative and Environmental Physiology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77118-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77118-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77120-0

  • Online ISBN: 978-3-642-77118-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics