• Philippe Sébert
  • Alister G. Macdonald
Part of the Advances in Comparative and Environmental Physiology book series (COMPARATIVE, volume 17)


Relatively little is known about the effects of high pressure on fish. Mammals have attracted much more attention, serving as models for human divers. It is a curious fact that few marine biologists in general, and fish biologists in particular, have responded to the extraordinary range of interesting hyperbaric phenomena which fish present.


Hydrostatic Pressure High Hydrostatic Pressure Root Effect Pressure Tolerance Deep Water Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi S, Morishima I 1989 The effects of pressure on oxygen and carbon monoxide binding kinetics for myoglobin. J Biol Chem 264: 18896–18901PubMedGoogle Scholar
  2. Ashford Mil, Macdonald AG, Wann KT 1984 Hydrostatic pressure modifies the actions of octanol and atropine on frog endplate conductance. Br J Pharmacol 83: 477–484PubMedGoogle Scholar
  3. Avent RM 1975 Evidence for acclimation to hydrostatic pressure in Uca pugilator Crustacea: Decapoda: Ocypodidae. Mar Biol 31: 193–199CrossRefGoogle Scholar
  4. Avrova NF 1984 The effect of natural adaptations of fishes to environmental temperature on brain ganglioside fatty acid and long chain base composition. Comp Biochem Physiol 78B: 903–909CrossRefGoogle Scholar
  5. Balny C, Masson P, Travers F 1989 Some recent aspects of the use of high pressure for protein investigations in solution. High Press Res 2: 1–28CrossRefGoogle Scholar
  6. Balouet G, Barthélémy L, Belaud A 1973 Etude, à partir d’un vertèbre aquatique, des effets spécifiques de la pression per se. In: Proc 1st Annu Sci Meet EUBS Forsvarmedicin 9: 483–488Google Scholar
  7. Barthélémy L 1981 Contributions à l’étude des effets biologiques de la pression hydrostatique per se. Med Aeron Sp 20: 344–352Google Scholar
  8. Barthélémy L 1985 Le poisson modèle scientifique en hyperbarie. Bull Inst Ocean Monaco Suppl 4: 9–31Google Scholar
  9. Barthélémy L, Belaud A 1972 Constatations physiologiques et physiopathologiques faites sur un poisson Anguilla anguilla L. en conditions hyperbares. Med Sub Hyp 8: 33Google Scholar
  10. Barthélémy L, Sébert P 1990 Modifications du métabolisme énergétique sous haute pression hydrostatique per se. Arch Int Physiol Biochem 98: A345 - A348Google Scholar
  11. Barthélémy L, Peyraud C, Belaud A, Mabin D 1975 Etude électroencéphalographique de l’anguille Anguilla anguilla. J Physiol Paris 70: 173–185PubMedGoogle Scholar
  12. Barthélémy L, Belaud A, Saliou A 1981 A study of the specific action of per se hydrostatic pressure on fish considered as a physiological model. In: Bachrach AJ, Matzen MM eds Proc 7th Symp Underwater Physiol Undersea Med Soc, Bethesda, pp 641–649Google Scholar
  13. Barthélémy L, Cann-Moisan C, Simon B, Caroff J, Sébert P 1992 Effets physiologiques de la pression hydrostatique PH: concentrations encephaliques d’acide gamma-aminobutyrique GABA chez un poisson Anguilla anguilla L. soumis a PH = 101 ATA. Med Sub Hyp In PressGoogle Scholar
  14. Beaver RW, Brauer RW 1981 Pressure temperature interactions in relation to development of high pressure convulsions in ectotherm vertebrates. Comp Biochem Physiol 69A: 665–674CrossRefGoogle Scholar
  15. Becker EL, Bird R, Kelly JW, Schilling J, Salmon S, Young N 1958 Physiology of marine teleosts. I. Ionic composition of tissues. Physiol Zool 31: 224–227Google Scholar
  16. Beebe W 1935 Half mile down. The Bodley Head, LondonGoogle Scholar
  17. Belaud A 1975 Contribution à l’étude de quelques réactions physiologiques de l’anguille Anguilla anguilla L. soumise à diverses conditions hyperbares. These Sci, Univ Brest, 271 ppGoogle Scholar
  18. Belaud A, Barthélémy L 1973 Effects of hydrostatic pressure 31 to 101 ATA on eel Anguilla anguilla L.. IRCS Cardiovasc Syst 73–10: 11–1–15Google Scholar
  19. Belaud A, Barthélémy L, Lesaint J, Peyraud C 1976a Trying to explain an effect of per se hydrostatic pressure on heart rate in fish. Aviat Space Environ Med 47: 252–257PubMedGoogle Scholar
  20. Belaud A, Barthélémy L, Peyraud C, Chouteau J 1976b Evidence of a pressure reversal of anaesthesia in fish. IRCS 4: 45Google Scholar
  21. Belaud A, Mabin D, Barthélémy L, Peyraud C 1976c Activité électroencéphalographique d’un poisson Anguilla anguilla L soumis à diverses conditions hyperbares. J Physiol Paris 72: 639–652PubMedGoogle Scholar
  22. Belaud A, Barthélémy L, Peyraud C 1977 Temperature and per se hydrostatic pressure reversal of pentobarbital anaesthesia in fish. J Appl Physiol 42: 329–334PubMedGoogle Scholar
  23. Belman BW, Gordon MS 1979 Comparative studies on the metabolism of shallow water and deep-sea marine fishes. V. Effects of temperature and hydrostatic pressure on oxygen consumption in the mesopelagic zoarcid Melanostigma pammelas. Mar Biol 50: 275–281Google Scholar
  24. Blaxter JHS, Tytler P 1972 Pressure discrimination in teleost fish. In: Sleigh MA, Macdonald AG eds The effects of pressure on organisms. Symp Soc Exp Biol 26. Univ Press, Cambridge, pp 417–444Google Scholar
  25. Blaxter JHS, Wardle CS, Roberts BL 1971 Aspects of the circulatory physiology and muscle systems of deep-sea fish. J Mar Biol Ass UK 51: 991–1006CrossRefGoogle Scholar
  26. Brauer RW, Jordan MR 1972 The double envelope concept in the design of high pressure aquaria. In: Brauer RW ed Barobiology and the experimental biology of the deep sea. Univ NC, Chapel Hill, pp 383–393Google Scholar
  27. Brauer RW, Beaver RW, Hogue CD, Ford B, Goldman SM, Venters RT 1974 Intra-and interspecies variability of vertebrate high pressure neurological syndrome. J Appl Physiol 37: 844–851PubMedGoogle Scholar
  28. Brauer RW, Beaver RW, Lahser S, McCall RD, Venters RT 1979 Comparative physiology of the high pressure neurological syndrome-compression rate effects. J Appl Physiol Respirat Environ Exercise Physiol 46: 128–135Google Scholar
  29. Brauer RW, Sidelyova DG, Dail MB, Galazii GI, Roer RD 1984 Physiological adaptation of cottoid fishes in Lake Baikal to abyssal depth. Comp Biochem Physiol 77A: 699–705CrossRefGoogle Scholar
  30. Brauer RW, Jordan MR, Miller CG, Johnson ED, Dutcher JA, Sheeman ME 1985 Interaction of temperature and pressure in intact animals. In: Pequeux AJR, Gilles R Ed High pressure effects on selected biological systems. Springer, Berlin Heidelberg New York pp 3–28CrossRefGoogle Scholar
  31. Bureau M, Banerjee R 1976 Structure volume relationships in haemoglobin. Biochimie 58: 403–407PubMedCrossRefGoogle Scholar
  32. Butler PJ, Metcalfe JD 1983 Control of respiration and circulation. In: Rankin JC, Pitcher TJ, Duggan R eds Control processes in fish. Physiology Croom Helm, London, pp 41–69Google Scholar
  33. Cann-Moisan C, Sébert P, Caroff J, Barthélémy L 1988 Effects of hydrostatic pressure HP = 101 ATA on nucleotide and pyridine dinucleotides tissue contents in trout. Exp Biol 47: 239–242PubMedGoogle Scholar
  34. Childress JJ, Nygaard MH 1973 The chemical composition of midwater fishes as a function of depth of occurrence off southern California. Deep Sea Res 20: 1093–1109Google Scholar
  35. Cohen DE, Haedrich RL 1983 The fish fauna of the Galapagos thermal vent region. Deep Sea Res 30: 371–379CrossRefGoogle Scholar
  36. Cohen De, Rosenblatt RH, Moser HG 1990 Biology and description of a bythitid fish from deep sea thermal vents in the tropical Eastern Pacific. Deep Sea Res 37: 267–283CrossRefGoogle Scholar
  37. Cossins AR, Macdonald AG 1984 Homeoviscous theory under pressure. II. The molecular order of membranes from deep sea fish. Biochem Biophys Acta 776: 144–150Google Scholar
  38. Cossins AR, Macdonald AG 1986 Homeoviscous theory under pressure. III. The fatty acid composition of liver mitochondria phospholipids of deep sea fish. Biochem Biophys Acta 860: 325–335Google Scholar
  39. Cossins AR, Macdonald AG 1989 The adaptation of biological membranes to temperature and pressure: fish from the deep and cold. J. Bioeng Biomembr 21: 115–135CrossRefGoogle Scholar
  40. Dahloff E, Schneidemann S, Somero GN 1990 Pressure-temperature interactions on M4-lactate dehydrogenases from hydrothermal vent fishes: evidence for adaptation to elevated temperatures by the zoarcid Thermarces andersoni but not by the bythitid Bythites hollisi. Biol Bull 179: 134–139CrossRefGoogle Scholar
  41. D’Aoust BG 1969 Hyperbaric oxygen: toxicity to fish at pressures present in their swimbladder. Science 163: 576–578PubMedCrossRefGoogle Scholar
  42. Dejours P 1981 Principles of comparative respiratory physiology. Elsevier/North Holland Biomedical Press, Amsterdam, 265 ppGoogle Scholar
  43. Dejours P 1989 From comparative physiology of respiration to several problems of environmental adaptations and to evolution. J Physiol 410: 1–19PubMedGoogle Scholar
  44. Delong EF, Yayanos AA 1985 Adaptation of the membrane lipid of a deep sea bacterium to changes in hydrostatic pressure. Science 228: 1101–1103PubMedCrossRefGoogle Scholar
  45. Draper JW, Edwards DJ 1932 Some effects of high pressure on developing marine forms. Biol Bull Mar Lab Woods Hole 63: 99–107CrossRefGoogle Scholar
  46. Ebbecke U 1944 Lebensvorgänge unter der Einwirkung hoher Drücke Ergebn Physiol 45: 34–183Google Scholar
  47. Eliason AH, Walden B, Rowe GT, Teal JM 1976 A free vehicle for measuring benthic community metabolism. Limnol Oceangr 21: 164–170CrossRefGoogle Scholar
  48. Enger PS 1957 The electroencephalogram of the codfish Gadus callarias. Acta Physiol Scand 39: 55–72PubMedCrossRefGoogle Scholar
  49. Fange R 1983 Gas exchange in fish swimbladder. Rev Physiol Biochem Phasmacol 97: 112–158Google Scholar
  50. Farrell AP 1984 A review of cardiac performance in the teleost heart: intrinsic and humoral regulation. Can J Zool 62: 523–536CrossRefGoogle Scholar
  51. Fenn WO 1971 Partial molar volume of oxygen and carbon monoxide in blood. Respirat Physiol 13: 128–140CrossRefGoogle Scholar
  52. Fontaine M 1928 Les fortes pressions et la consommation d’oxygène de quelques animaux marins. Influences de la taille de l’animal. CR Seances Soc Biol 99: 1789–1790Google Scholar
  53. Fontaine M 1929a De l’augmentation de la consommation d’O des animaux marins sous l’influence des fortes pressions, ses variations en fonction de l’intensité de la compression. CR Acad Sci Paris 188: 460–461Google Scholar
  54. Fontaine M 1929b De l’augmentation de la consommation d’oxygene des animaux marins sous l’influence des fortes pressions, ses variations en fonction de la durée de la compression. CR Acad Sci Paris 188: 662–663Google Scholar
  55. Fontaine YA, Dufour S, Alinat J, Fontaine M 1985 L’immersion prolongée en profondeur stimule la fonction hypophysaire gonadotrope de l’anguille européenne Anguilla anguilla L. femelle. CR Acad Sci Paris 300: 83–87Google Scholar
  56. Frauenfelder H, and 20 co-authors 1990 Proteins and pressure. J Phys Chem 94: 1024–1037 Friedlander MJ, Kotchabhakdi N, Prosser CL 1976 Effects of cold and heat on behaviour and cerebellar function in goldfish. J Comp Physiol 112: 19–45Google Scholar
  57. Gekko K, Hasegawa Y 1986 Compressibility-structure relationship of globular proteins. Biochemistry 25: 6563–6571PubMedCrossRefGoogle Scholar
  58. George RY, Marum JP 1974 The effects of hydrostatic pressure on living aquatic organisms. III. Behaviour and tolerance of euplanktonic organisms to increased hydrostatic pressure. Int Rev Gesamten Hydrobiol 59: 175–186Google Scholar
  59. Gennser M, Karpe F, Ornhagen HC 1990 Effects of hyperbaric pressure and temperature on atria from ectotherm animals Rana pipiens and Anguilla anguilla. Comp Biochem Physiol 95A: 219–228CrossRefGoogle Scholar
  60. Gibbs A, Somero GN 1989 Pressure adaptation of Na +/IATPase in gills of marine teleosts. J Exp Biol 143: 475–492PubMedGoogle Scholar
  61. Gibbs A, Somero GN 1990 Pressure adaptation of teleost gill Na+/K+ adenosine triphosphatase: role of the lipid and protein moieties. J Comp Physiol 160B: 431–439Google Scholar
  62. Gilchrist I, Macdonald AG 1983 Techniques for experiments with deep-sea organisms at high pressure. In: Macdonald AG, Priede IG eds Experimental biology at sea. Academic Press, London, pp 239–276Google Scholar
  63. Girin E, Barthélémy L 1978 Approche histoenzymologique des effects de la temperature et de la pression sur un poisson Anguilla anguilla L.. Oceanol Acta 1: 169–180Google Scholar
  64. Graham MS, Haedriuch RL, Fletcher GL 1985 Hematology of three deep-sea fishes: a reflection of low metabolic rates. Comp Biochem Physiol 80A: 79–84CrossRefGoogle Scholar
  65. Grey M 1956 The distribution of fishes found below a depth of 2000 metres. Fieldiana Zool 36: 77–93Google Scholar
  66. Grassle JF 1985 Hydrothermal vent animals: distribution and ecology. Science 229: 713–725PubMedCrossRefGoogle Scholar
  67. Hara TJ, Ueda K, Gorbman A 1965 Electroencephalographic studies of homing salmon. Science 149: 884–885PubMedCrossRefGoogle Scholar
  68. Harper AA, Macdonald AG, Wardle CS, Pennec JP 1987 The pressure tolerance of deep-sea fish axons. Result of Challenger cruise 6B/85. Comp Biochem Physiol 88A: 647–653CrossRefGoogle Scholar
  69. Hasinoff BB 1974 Kinetic activation volumes of the binding of oxygen and carbon monoxide to haemoglobin and myoglobin studies on a high pressure laser flash photolysis apparatus. Biochemistry 13: 3111–3117PubMedCrossRefGoogle Scholar
  70. Healey EG 1957 The nervous system. In: Brown ME Ed The physiology of fishes. Acad Press, New York, pp 1–119Google Scholar
  71. Hennessey JP, Siebenaller JF 1985 Pressure inactivation of tetrameric lactate dehydrogenase homologues of confamilial deep-living fishes. J Comp Physiol 155B: 647–652Google Scholar
  72. Heremans K 1986 Pressure effects on the reactions of heme proteins. In: Van Eldik R, Jonas J eds High pressure chemistry and biochemistry. NATO ASI Ser 197: 421–445 Google Scholar
  73. Hoar WS, Randall DJ 1970 Fish physiology, vol 4: The nervous system, circulation, and respiration. Academic Press, New York, pp 552Google Scholar
  74. Hochachka PW 1975a Biochemistry at depth. Pressure effects on biochemical systems of abyssal and midwater organisms. The 1973 Kona expedition of the Alpha Helix. Pergamon, Oxford, 202 ppGoogle Scholar
  75. Hochachka PW 1975b How abyssal organisms maintain enzymes of the “right” size. Comp Biochem Physiol 52B: 39–41Google Scholar
  76. Hochachka PW, Storey KB, Baldwin J 1975 Design of acetylcholinesterase for its physical environment. Comp Biochem Physiol 52B: 13–18CrossRefGoogle Scholar
  77. Holmgren S, Nilsson S 1982 Neuropharmacology of adrenergic neurons in teleost fish. Comp Biochem Physiol 72C: 289–302Google Scholar
  78. Jannasch HW, Wirsen CO 1973 Deep-sea microorganisms: in situ responses to nutrient enrichment. Science 180: 641–643PubMedCrossRefGoogle Scholar
  79. Jannasch HW, Eimhjellen K, Wirsen CO, Farmanfarmaian A 1971 Microbial degradation of organic matter in the deep-sea. Science 171: 672–675PubMedCrossRefGoogle Scholar
  80. Johansson P 1983 Comparative aspects of central cardiovascular control with special reference to adrenergic mechanisms. Comp Biochem Physiol 74C: 239–248Google Scholar
  81. Johnstone ADF, Macdonald AG, Mojsiewicz WR, Wardle CS 1989 Preliminary experiments in the adaptation of the European eel Anguilla anguilla to high hydrostatic pressure. J Physiol 417: 87 PGoogle Scholar
  82. Kendig JJ, Trudell JR, Cohen EN 1975 Effects of pressure and anaesthetics on conduction and synaptic transmission. J Pharm Exp Ther 195: 216–224Google Scholar
  83. Kirsch R, Nonnotte G 1977 Cutaneous respiration in three freshwater teleosts. Respirat Physiol 29: 339–354CrossRefGoogle Scholar
  84. Laurent P, Holmgren S, Nilsson S 1983 Nervous and humoral control of the fish heart: structure and function. Comp Biochem Physiol 76A: 525–542CrossRefGoogle Scholar
  85. Lee AG 1991 Lipids and their effects on membrane proteins: evidence against a role for fluidity. Prog Lipid Res 30: 323–348PubMedCrossRefGoogle Scholar
  86. Lowenstam HA, Westphal JA 1972 Pressure effects on marine invertebrates in an open-system high pressure aquarium. In: Brauer RW ed Barobiology and the experimental biology of the deep sea. University NC Press, Chapel Hill, pp 335–361Google Scholar
  87. Macdonald AG 1987 The role of membrane fluidity in complex processes under high pressure. In: Jannasch HW, Marquis RE, Zimmerman AM eds Current perspectives in high pressure biology. Academic Press, London, pp 207–223Google Scholar
  88. Macdonald AG 1988 Application of the theory of homeoviscous adaptation to excitable membranes: pre-synaptic processes. Biochem J 256: 313–327PubMedGoogle Scholar
  89. Macdonald AG 1990 The homeoviscous theory of adaptation applied to excitable membranes: a critical evaluation. Biochim Biophys Acta 1031: 291–310PubMedGoogle Scholar
  90. Macdonald AG, Cossins AR 1985 The theory of homeoviscous adaptation of membranes applied to deep-sea animals. In: Laverack M ed Physiological adaptations of marine animals. Comp Biol, Cambridge, pp 301–322Google Scholar
  91. Macdonald AG, Gilchrist I 1980 Effects of hydrostatic compression and decompression on deep-sea amphipods. Comp Biochem Physiol 67A: 149–153CrossRefGoogle Scholar
  92. Macdonald AG, Gilchrist I 1978 Further studies on the pressure tolerance of deep sea crustacea with observations using a new high pressure trap. Mar Biol 45: 9–21CrossRefGoogle Scholar
  93. Macdonald AG, Gilchrist I 1982 The pressure tolerance of deep-sea amphipods collected at their ambient high pressure. Comp Biochem Physiol 71A: 349–352CrossRefGoogle Scholar
  94. Macdonald AG, Gilchrist I, Wardle CS 1987 Effects of hydrostatic pressure on the motor activity of fish from shallow water and 900 m depths; some results of Challenger Cruise 6B/85. Comp Biochem Physiol 88A: 543–547CrossRefGoogle Scholar
  95. Macdonald AG, Marshall NR, Pertwee RG 1989 Behavioural thermoregulation in mice subjected to high pressure. J Appl Physiol 66: 238–244PubMedGoogle Scholar
  96. McDonald DG, Cavdek V, Ellis 1991 Gill design in freshwater fishes.: inter-relationships among gas exchange, ion regulation, and acid-base regulation. Physiol 64: 103–123Google Scholar
  97. Meek RP, Childress JJ 1973 Respiration and the effect of pressure in the mesopelagic fish Anoplogaster cornuta Beryciformes. Deep-Sea Res 20: 1111–1118Google Scholar
  98. Menzies R, Wilson JB 1961 Preliminary field experiments on the relative importance of pressure and temperature on the penetration of marine invertebrates into the deep-sea. Oikos 12: 302–309CrossRefGoogle Scholar
  99. Milsom WK 1990 Mechanoreceptor modulation of endogenous respiratory rhythms in vertebrates. Am J Physiol 259: R898 - R910PubMedGoogle Scholar
  100. Murayama M 1973 Sickle cell haemoglobin. Molecular basis of sickling phenomenon theory and therapy. Crit Essays Biochem 1: 461–492CrossRefGoogle Scholar
  101. Naroska V 1968 Vergleichende Untersuchungen über den Einfluß des hydrostatischen Druckes auf überlebensfähigkeit and Stoffwechselintensität Mariner Vertebraten and Teleosteer. Kieler Meeresforsch 24: 95–123Google Scholar
  102. Nielsen JG, Munk 0 1964 A hadal fish Bassagigas profundissimus with a functional swim-bladder. Nature Lond 204: 594–595Google Scholar
  103. Nishiyama T 1965 A preliminary note on the effect of hydrostatic pressure on the behaviour of some fish. Bull Fac Fish Hokkaido Uni 15: 213–214Google Scholar
  104. Noble RW, Pennelly RR, Riggs AF 1975 Studies on the functional properties of the haemoglobin from the benthic fish Antimora rostrata. Comp Biochem Physiol 52B: 75–81Google Scholar
  105. Noblé RW, Kwiatkowski LD, De Young A, Davis BJ, Haldrich RL, Tam L-T, Riggs AG 1986 Functional properties of haemoglobin from deep-sea fish: correlation with depth distribution and presence of swimbladder. Biochim Biophys Acta 870: 552–563PubMedCrossRefGoogle Scholar
  106. Pennec JP, Wardle CS, Harper AA, Macdonald AG 1988 Effects of high hydrostatic pressure on the isolated hearts of shallow water and deep sea fish; results of challenger Cruise 6B/85. Comp Biochem Physiol 89A: 215–218CrossRefGoogle Scholar
  107. Péqueux A 1981 Effects of high hydrostatic pressure on Na+ transport across isolated gill epithelium of sea water-acclimated eels Anguilla anguilla. In: Bachrach AJ, Matzen MM eds Underwater physiology, vol 7. Undersea Med Soc, Bethesda, pp 601–609Google Scholar
  108. Péqueux A, Gilles R 1978 Effects of high hydrostatic pressure on the activity of the membrane ATPase of some organs implicated in hydromineral regulation. Comp Biochem Physiol 55A: 103–108CrossRefGoogle Scholar
  109. Péqueux A, Gilles R 1986 Effects of hydrostatic pressure on ionic and osmotic regulation. In: Brubakk AO, Kanwisher JW, Sundes G eds Diving in animals and man. Tapir, Trondheim, Norway, pp 161–189Google Scholar
  110. Peyraud-Waitzenegger M, Barthélémy L, Peyraud C 1980 Cardiovascul.:.• and ventilatory effects of catecholamines in unrestrained eels Anguilla anguilla L. A study of seasonal changes of reactivity. J Comp Physiol 138: 367–375Google Scholar
  111. Pfeiler E 1978 Effects of hydrostatic pressure on Na + K+-ATPase and Mg’-ATPase in gills of marine teleost fish. J Exp Zool 205: 393–402CrossRefGoogle Scholar
  112. Phleger CF, Laub RJ 1989 Skeletal fatty acids in fish from different depths off Jamaica. Comp Biochem Physiol 94B: 329–334CrossRefGoogle Scholar
  113. Pickering AD 1981 Stress and fish. Academic Press, London, 365 ppGoogle Scholar
  114. Pin S, Royer CA, Gratton E, Alpert B, Weber G 1990 Subunit interactions in haemoglobin probed by fluorescence and high pressure techniques. Biochemistry 29: 9194–9202PubMedCrossRefGoogle Scholar
  115. Powers DA 1989 Fish as model systems. Science 246: 352–358PubMedCrossRefGoogle Scholar
  116. Prohan HD, Dreher C, Van Eldik R 1990 Effects of pressure on the formation and deoxygenation kinetics of oxymyoglobin. Mechanistic information from a volume profile analysis. J Am Chem Soc 112: 17–22Google Scholar
  117. Prosser CL 1973 Inorganic ions. In: Prosser CL, Brown FA eds Comparative animal physiology. Saunders, Philadelphia, pp 57–80Google Scholar
  118. Prosser CL, Weems W, Meiss R 1975 Physiological state, contractile properties of heart and lateral muscles of fishes from different depths. Comp Biochem Physiol 52B: 127–131Google Scholar
  119. Quentin LB, Childress JJ 1980 Observations on the swimming activity of two bathypelagic mysid species maintained at high hydrostatic pressure. Deep-Sea Res 27A: 383–391CrossRefGoogle Scholar
  120. Rahmann H 1978 Gangliosides and thermal adaptation in vertebrates. Jap J Exp Med 48: 85–96PubMedGoogle Scholar
  121. Reeves RB, Morin RA 1986 Pressure increases oxygen affinity of whole blood and erythrocytes suspensions. J Appl Physiol 61: 486–494PubMedGoogle Scholar
  122. Regnard P 1884 Effet des hautes pressions sur les animaux marins. CR Seances Soc Biol 36: 394–395Google Scholar
  123. Regnard P 1885 Phenomènes objectifs que l’on peut observer sur les animaux soumis aux hautes pressions. CR Seances Soc Biol 37: 510–515Google Scholar
  124. Robins CR, Cohen DM, Robins CH 1979 The eels Anguilla and Histiobranchus, photo- graphed on the floor of the deep Atlantic in the Bahamas. Bull Mar Sci 29: 401–405Google Scholar
  125. Roer RD, Péqueux AJR 1985 Effects of hydrostatic pressure on ionic and osmotic regulation. In: Péqueux AJR, Gilles R eds High pressure effects on selected biological systems. Springer, Berlin Heidelberg New York, pp 31–49CrossRefGoogle Scholar
  126. Roer RD, Sidelyova VG, Brauer RW, Galazii GI 1984 Effects of pressure on oxygen consumption in cottid fish from Lake Baikal. Experientia 40: 771–773CrossRefGoogle Scholar
  127. Saliou A 1980 Contribution à l’étude de la narcose aux gaz inertes et du syndrome nerveux des hautes pressions. Roles respectifs de la pression hydrostatique et des pressions hyperbares de gaz inertes. These Sci, Univ Brest, 88 ppGoogle Scholar
  128. Schade JP, Weiler IJ 1959 Electroencephalographic pattern of the goldfish Carassius auratus L. J Exp Biol 36: 435–452Google Scholar
  129. Sébert P 1986 Essai d’interprétation de certains effets de la pression hydrostatique sur un organisme vivant: le poisson. These Sci, Univ Brest, 101 ppGoogle Scholar
  130. Sébert P, Barthélémy L 1985a Hydrostatic pressure and adrenergic drugs agonists and antagonists: effects and interactions in fish. Comp Biochem Physiol 82C: 207–212Google Scholar
  131. Sébert P, Barthélémy L 1985b Effects of high hydrostatic pressure per se, 101 atm on eel metabolism. Respirat Physiol 62: 349–357CrossRefGoogle Scholar
  132. Sébert P, Barthélémy L, Caroff J 1985a Serotonin levels in fish brain: effects of hydrostatic pressure and water temperature. Experientia 41: 1429–1430CrossRefGoogle Scholar
  133. Sébert P, Bigot JC, Barthélémy L 1985b Effects of hydrostatic pressure on aminoacid contents of eel brain. IRCS Med Sci 13: 834–835Google Scholar
  134. Sébert P, Barthélémy L, Caroff J 1986 Catecholamine content as measured by the HPLC method in brain and blood plasma of the eel: effects of 101 ATA hydrostatic pressure. Comp Biochem Physiol 84C: 155–157CrossRefGoogle Scholar
  135. Sébert P, Barthélémy L, Caroff J, Hourmant A 1987 Effects of hydrostatic pressure per se 101 ATA on energetic processes in fish. Comp Biochem Physiol 86A: 491–495CrossRefGoogle Scholar
  136. Sébert P, Barthélémy L, Simon B 1990 Laboratory system enabling long-term exposure (> 30 d) to hydrostatic pressure (< 101 atm) of fishes or other animals breathing water. Mar Biol 104: 165–168 CrossRefGoogle Scholar
  137. Sébert P, Simon B, Barthélémy L 1991a Hypoxie de type histotoxique induite par la pression hydrostatique chezle poisson. Arch Int Physiol Biochem Biophys 99: Al21Google Scholar
  138. Sébert P, Pequeux A, Simon B, Barthélémy L 1991b Effects of long term exposure to 101 ATA hydrostatic pressure on blood gill and muscle composition and on some enzyme activities of the FW eel Anguilla anguilla L.. Comp Biochem Physiol 98B: 573–577CrossRefGoogle Scholar
  139. Shelton C, Macdonald AG, Pequeux A, Gilchrist I 1985 The ionic composition of the plasma and erythrocyte of deep sea fish. J Comp Physiol B 115: 629–633CrossRefGoogle Scholar
  140. Siebenaller JF 1984 Analysis of biochemical consequences of ontogenetic vertical migration in a deep living teleost fish. Physiol Zool 57: 598–608Google Scholar
  141. Siebenaller JF, Somero GN 1982 The maintenance of different enzyme activity levels in congeneric fishes living at different depths. Physiol Zool 55: 171–179Google Scholar
  142. Siebenaller JF, Somero GN 1989 Biochemical adaptation to the deepsea. CRC Crit Rev Aquat Sci 1: 1–25Google Scholar
  143. Siebenaller JF, Somero GN, Haedrich RL 1982 Biochemical characteristics of macrourid fishes differing in their depths of distribution. Biol Bull 163: 240–249CrossRefGoogle Scholar
  144. Silva JL, Villa-Boas M, Bonafe CFS, Meireilles NC 1989 Anomalous pressure dissociation of large protein aggregates. J Biol Chem 264: 15863–15868PubMedGoogle Scholar
  145. Simon B 1990 Métabolisme energétique de l’anguille Anguilla anguilla L.: effets d’expositions de courte durée 3 heures et de longue durée un mois à 101 ATA de pression hydrostatique. These Sci, Univ Brest, 105 ppGoogle Scholar
  146. Simon B, Sébert P, Barthélémy L 1989a Effects of long-term exposure to hydrostatic pressure per se 101 ATA on eel metabolism. Can J Physiol Pharmacol 67: 1247–1251PubMedCrossRefGoogle Scholar
  147. Simon B, Sébert P, Barthélémy L 1989b Opposition des effects de la pression hydrostatique et de la pression partielle d’azote chez l’anguille. Med Sub Hyp 8: 77–93Google Scholar
  148. Simon B, Sébert P, Barthélémy L 1991 Eel Anguilla anguilla L. muscle modification induced by long term exposure to 101 ATA hydrostatic pressure. J Fish Biol 38: 89–94CrossRefGoogle Scholar
  149. Smart GR 1978 Investigations of the toxic mechanisms of ammonia to fish-gas exchange in rainbow trout Salmo gairdneri exposed to acutely lethal concentrations. J Fish Biol 12: 93–104CrossRefGoogle Scholar
  150. Smatresk NJ 1990 Chemoreceptor modulation of endogenous respiratory rhythms in vertebrates. Am J Physiol 259: R887 - R897PubMedGoogle Scholar
  151. Smith KL, Baldwin RJ 1983 Deep sea respirometry: in situ techniques. In: Gnaiger E, Forster H in situ. Nature Lond 274: 362–364Google Scholar
  152. Smith KL, Baldwin RJ 1983 Deep sea respirometry: in situ techniques In: Gnaiger E, Forster H eds Polarographic oxygen sensors: aquatic and physiological applications. Springer, Berlin Heidelberg New York, pp 298–319Google Scholar
  153. Smith KL, Brown NO 1983 Oxygen consumption of pelagic juveniles and demersal adults of the deepsea fish Sebastolobus altivelis, measured at depth. Mar Biol 76: 325–332CrossRefGoogle Scholar
  154. Smith KL, Hessler RR 1974 Respiration of benthopelagic fishes: in situ measurements at 1230 meters. Science 184: 72–73PubMedCrossRefGoogle Scholar
  155. Smith KL, Teal JM 1973 Deep-sea benthic community respiration: an in situ study at 1850 m. Science 179: 282–283PubMedCrossRefGoogle Scholar
  156. Smith KL, Burns KA, Teal JM 1972 In situ respiration of benthic communities in Castle Harbour, Bermuda. Mar Biol 12: 196–199Google Scholar
  157. Somero GN 1990 Life at low volume change: hydrostatic pressure as a selective factor in the aquatic environment. Am Zool 30: 125–135Google Scholar
  158. Somero GN, Siebenaller JF, Hochachka PW 1983 Biochemical and physiological adaptations of deep sea animals. In: Rowe GT ed Deep sea biology. John Wiley & Sons, New York, pp 261–330Google Scholar
  159. Sullivan KM, Somero GN 1980 Enzyme activities of fish skeletal muscle and brain as influenced by depth of occurrence and habits of feeding and locomotion. Mar Biol 60: 91–99CrossRefGoogle Scholar
  160. Sweezey RR, Somero GN 1982 Skeletal muscle actin content is strongly conserved in fishes having different depths of distribution and capacities of locomotion. Mar Biol Lett 3: 307–315Google Scholar
  161. Taylor CD 1987 Solubility properties of oxygen and helium in hyperbaric systems and the influence of high pressure upon bacterial growth metabolism and viability. In: Jannasch HW, Marquis RE, Zimmerman AM eds Current perspectives in high pressure biology. Academic Press, New York, pp 111–128Google Scholar
  162. Teal JM 1972 In situ respirometry in the deep sea, In: Brauer RW ed Barobiology and the experimental biology of the deep sea. Univ NC Press, Chapel Hill, pp 212–222Google Scholar
  163. Tesch FW 1978 Telemetric observations on the spawning migration of the eel Anguillaanguilla west of the European continental shelf. Environ Biol Fish 3: 203–209CrossRefGoogle Scholar
  164. Tetteh-Lartey NA 1985 Effects of temperature and hydrostatic pressure on contraction properties in vitro of skeletal muscle from a teleost. BSc Thesis, Univ AberdeenGoogle Scholar
  165. Theede H 1972 Design and performance characteristics of currently existing high pressure aquarium systems. In: Brauer RW ed Barobiology and the experimental biology of the deep sea. Univ NC Press, Chapel Hill, pp 326–371Google Scholar
  166. Thurston MH 1979 Scavenging abyssal amphipods from the north-east Atlantic Ocean. Mar Biol 51: 55–68CrossRefGoogle Scholar
  167. Tilton RF, Petsko GA 1988 A structure of sperm whale myoglobin at a nitrogen gas pressure of 145 atmospheres. Biochemistry 27: 6574–6582PubMedCrossRefGoogle Scholar
  168. Torres JJ, Somero GN 1988 Vertical distribution and metabolism in antarctic mesopelagic fishes. Comp Biochem Physiol 90B: 521–528Google Scholar
  169. Torres JJ, Belman BW, Childress J 1979 Oxygen consumption rates of midwater fishes as a function of depth of occurrence. Deep-Sea Res 26A: 185–197CrossRefGoogle Scholar
  170. Wardle CS 1985 Swimming activity in marine fish. In: Laverack M ed Physiological adaptations of marine animals. Comp Biol, Cambridge, UK, pp 521–540Google Scholar
  171. Wardle CS, Tetteh-Lartey NA, Macdonald AG, Harper AA, Pennec JP 1987 The effect of pressure on the lateral swimming muscle of the European eel Anguilla anguilla and the deep sea eel Histiobranchus bathybius. Results of Challenger Cruise 6B/85. Comp Biochem Physiol 88A: 595–598CrossRefGoogle Scholar
  172. Weber G, Drickamer HG 1983 The effect of high pressure upon proteins and other bio-molecules. Q Rev Biophys 16: 89–112PubMedCrossRefGoogle Scholar
  173. Weiland CA, Minneman KP, Molinoff PB 1979 Fundamental difference between the molecular interactions of agonists and antagonists with the adrenergic receptor. Nature Lond 281: 114–117PubMedCrossRefGoogle Scholar
  174. Whitt GS, Prosser CL 1971 Lactate dehydrogenase isozymes, cytochrome oxidase activity and muscle ions of the rattail Coryphaenoides sp.. Am Zool 11: 503–511Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Philippe Sébert
    • 1
  • Alister G. Macdonald
    • 2
  1. 1.Service de Physiologie, Faculte de MedecineUniversite de Bretagne OccidentaleBrest CedexFrance
  2. 2.Division of Physiology, School of Biomedical SciencesUniversity of Aberdeen, Marischal College AberdeenScotland, UK

Personalised recommendations