Skip to main content

Ion Channels and Nerve Cell Function

  • Chapter

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 17))

Abstract

Pressure, like temperature, is one of the fundamental physical variables which constrain living entities. Because it is difficult to manipulate pressure as an experimental variable, however, it has not been a subject of casual study; indeed, very powerful motivation is required to pursue studies of pressure effects. Fortunately, the pressure domain does offer two strong motivations which apply particularly to the study of nerve cell behavior. As an experimental variable, pressure studies hold the promise of illuminating the physical changes undergone by membrane ion channels and other membrane components during normal nerve cell function, and also of probing the effects of anaesthetic agents. At the level of the functioning nervous system within the animal, pressure is one of the major environmental conditions to which organisms must accommodate as individuals or adapt as species. Some organisms cope with life cycles carried out at great depths and constant high pressure (Chap. 5). Some, including man, normally live near mean sea level pressure and dive occasionally; these must deal with the neurological effects of rapid pressure change. This chapter presents the contributions of pressure studies to understanding the way in which membrane proteins such as ion channels function. Those components most sensitive to pressure increases are highlighted, and the results presented in relation to changes in the behavior of isolated nerve cells and, ultimately, the whole nervous system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angel A, Halsey MJ, Wardley-Smith B (1983) Interactions of y-aminobutyric acid and noradrenaline in the high pressure neurological syndrome. Br J Pharmacol 79: 725–729

    PubMed  CAS  Google Scholar 

  • Ashford MU, Macdonald AG, Wann KT (1982) The effects of hydrostatic pressure on the spontaneous release of transmitter at the frog neuromuscular junction. J Physiol 333: 531–543

    PubMed  CAS  Google Scholar 

  • Bean BP, Shrager P, Goldstein DA (1981) Modification of sodium and potassium channel gating kinetics by ether and halothane. J Gen Physiol 77: 233–253

    PubMed  CAS  Google Scholar 

  • Bennett PB (1975) The high pressure nervous syndrome: man. In: Bennett PB, Elliot DH (eds) The physiology and medicine of diving and compressed air work. Bailliere Tindall, London, pp. 248–263

    Google Scholar 

  • Bennett PB (1989) Physiological limitations to underwater exploration and work. Comp Biochem Physiol A 93: 295–300

    PubMed  CAS  Google Scholar 

  • Brauer RW (1975) The high pressure nervous syndrome: animals. In: Bennett PB, Elliott DH (eds) The physiology and medicine of diving and compressed air work. Bailliere Tindall, London, pp 231–247

    Google Scholar 

  • Brauer RW, Goldman SM, Beaver RW, Sheehan ME (1974) N2, H2 and N2O antagonism of high pressure neurological syndrome in mice. Undersea Biomed Res 1: 59–72

    PubMed  CAS  Google Scholar 

  • Brauer RW, Hogan PM, Hugon M, Macdonald AG, Miller KW (1982) Patterns of interaction of effects of light metabolically inert gases with those of hydrostatic pressure as such — a review. Undersea Biomed Res 9: 353–396

    PubMed  CAS  Google Scholar 

  • Bruner LJ, Hall JE (1983) Pressure effects on alamethicin conductance in bilayer membranes. Biophys J 44: 39–47

    PubMed  CAS  Google Scholar 

  • Campenot RB (1975) The effects of high hydrostatic pressure on transmission at the crustacean neuromuscular junction. Comp Biochem Physiol B 52: 133–140

    PubMed  CAS  Google Scholar 

  • Colton CA, Colton JS (1982) An electrophysiological analysis of oxygen and pressure on synaptic transmission. Brain Res 251: 221–227

    PubMed  CAS  Google Scholar 

  • Conti F, Fioravanti R, Segal JR, Stuhmer W (1982a) Pressure dependence of the sodium currents of squid giant axon. J Membr Biol 69: 23–34

    PubMed  CAS  Google Scholar 

  • Conti F, Fioravanti R, Segal JR, Stuhmer W (1982b) Pressure dependence of the potassium currents of squid giant axon. J Membr Biol 69: 35–40

    PubMed  CAS  Google Scholar 

  • Conti F, Inoue I, Stuhmer W, Kukita F (1984) Pressure dependence of sodium gating currents in the squid giant axon. Eur Biophys J 11: 137–147

    PubMed  CAS  Google Scholar 

  • Datyner NB, Gage PW (1982) Phasic secretion of acetylcholine at mammalian neuromuscular junction. J Physiol 303: 299–314

    Google Scholar 

  • Douzou P (1979) The study of enzyme mechanisms by a combination of cosolvent, low-temperature and high-pressure techniques. Q Rev Biophys 12: 512–569

    Google Scholar 

  • Dudel J (1981) The effect of reduced calcium on quantal unit current and release at the crayfish neuromuscular junction. Pflügers Arch Eur J Physiol 391: 35–40

    CAS  Google Scholar 

  • Dudel J, Parnas I, Parnas H (1982) Neurotransmitter release and its facilitation in crayfish. III. Amplitude of facilitation and inhibition of entry of calcium into the terminal by magnesium. Pflügers Arch Eur J Physiol 393: 237–242

    CAS  Google Scholar 

  • Dudel J, Parnas I, Parnas H (1983) Neurotransmitter release and its facilitation in crayfish muscle. VI. Release determined by both intracellular calcium concentration and depolarization of the nerve terminal. Pflügers Arch Eur J Physiol 399: 1–10

    CAS  Google Scholar 

  • Ebbecke U, Schaefer H (1935) Über den Einfluss hoher Drücke auf den Aktionsstrom von Muskeln and Nerven. Pflügers Arch Ges Physiol Menschen Tiere 236: 678–692

    Google Scholar 

  • Galla HJ, Trudell JR (1980) Asymmetric antagonistic effects of an inhalation anesthetic and high pressure on the phase transition temperature of dipalmitoyl phosphatidic acid bilayers. Biochim Biophys Acta 599: 336–340

    PubMed  CAS  Google Scholar 

  • Gilman SC, Colton JS, Dutka AJ, Boogaard JS (1986a) Effects of high pressure on the release of excitatory amino acids by brain synaptosomes. Undersea Biomed Res 13: 397–406

    PubMed  CAS  Google Scholar 

  • Gilman SC, Kumaroo KK, Hallenbeck JM (1986b) Effects of pressure on uptake and release of calcium by brain synaptosomes. J Appl Physiol 60: 1446–1450

    PubMed  CAS  Google Scholar 

  • Gilman SC, Colton JS, Dutka AJ (1987) Effect of pressure on release of radioactive glycine and gamma-aminobutyric acid from spinal cord synaptosomes. J Neurochem 49: 1571–1578

    PubMed  CAS  Google Scholar 

  • Gilman SC, Colton JS, Dutka AJ (1988a) Release of dopamine from striatal synaptosomes: high pressure effects. Undersea Biomed Res 15: 13–18

    PubMed  CAS  Google Scholar 

  • Gilman SC, Colton JS, Hsu SC, Dutka AJ (1988b) Pressure suppresses serotonin release by guinea pig striatal synaptosomes. Undersea Biomed Res 15: 69–77

    PubMed  CAS  Google Scholar 

  • Gilman SC, Colton JS, Dutka AJ (1989a) Pressure-dependent changes in the release of GABA by cerebrocortical synaptosomes. Undersea Biomed Res 16: 253–258

    PubMed  CAS  Google Scholar 

  • Gilman SC, Colton JS, Dutka AJ (1989b) Alteration in brain monoamine neurotransmitter release at high pressure. Exp Brain Res 78: 179–184

    PubMed  CAS  Google Scholar 

  • Gilman SC, Colton JS, Grossman Y (1991) A23187-stimulated calcium uptake and GABA release by cerebrocortical synaptosomes: effect of high pressure. J Neural Transm 86: 1–9

    CAS  Google Scholar 

  • Golan H, Grossman Y (1989) Presynaptic effect of hyperbaric pressure and low extracellular calcium. In: Proc Eur Undersea Biomed Soc Annu Meet, Eilat, pp 198–202

    Google Scholar 

  • Goldinger JM, Kang BS, Choo YE, Paganelli CV, Hong SK (1980) The effect of hydrostatic pressure on ion transport and metabolism in human erythrocytes. J Appl Physiol 49: 224–231

    PubMed  CAS  Google Scholar 

  • Grossman Y, Spira ME, Parnas I (1973) Differential flow of information into branches of a single axon. Brain Res 64: 379–386

    PubMed  CAS  Google Scholar 

  • Grossman Y, Kendig JJ (1982) General anesthetic block of a bifurcating axon. Brain Res 245: 148–153

    PubMed  CAS  Google Scholar 

  • Grossman Y, Kendig JJ (1984a) Pressure and temperature: time-dependent modulation of membrane properties in a bifurcating axon. J Neurophysiol 52 (4): 692–708

    Google Scholar 

  • Grossman Y, Kendig JJ (1984b) Time-dependent effects of pressure and temperature on an integrative axon. In: Bachrach AJ, Matzen MM (eds) Underwater physiology, vol. 8. Undersea Med Soc, Bethesda MD, pp 583–591

    Google Scholar 

  • Grossman Y, Kendig JJ (1986) Pressure and temperature modulation of conduction in a bifurcating axon. Undersea Biomed Res 13 (1): 45–61

    PubMed  CAS  Google Scholar 

  • Grossman Y, Kendig JJ (1987) Modulation of impulse conduction through axonal branchpoint by physiological, chemical and physical factors, Isr J Med Sci 23: 107–114

    PubMed  CAS  Google Scholar 

  • Grossman Y, Kendig JJ (1988) Synaptic integrative properties at hyperbaric pressure. J Neurophysiol 60: 1497–1512

    PubMed  CAS  Google Scholar 

  • Grossman Y, Kendig JJ (1990) Evidence for reduced presynaptic Ca’ entry at hyperbaric pressure. J Physiol 420: 355–364

    PubMed  CAS  Google Scholar 

  • Grossman Y, Parnas I, Spira ME (1979a) Differential conduction block in branches of a bifurcating axon. J Physiol 295: 283–305

    PubMed  CAS  Google Scholar 

  • Grossman Y, Parnas I, Spira ME (1979b) Ionic mechanisms involved in differential conduction of action potentials at high frequency in a branching axon. J Physiol 295: 307–322

    PubMed  CAS  Google Scholar 

  • Grossman Y, Colton JC, Gilman SC (1991a) Interaction of Ca-channel blockers and high pressure at the crustacean neuromuscular junction. Neurosci Lett 125: 53–56

    PubMed  CAS  Google Scholar 

  • Grossman Y, Colton JS, Gilman SC (1991b) Reduced Ca currents in frog nerve terminals at high pressure. In: Calcium entry and action at the presynaptic nerve terminal. Ann NY Acad Sci 635: 411–412

    CAS  Google Scholar 

  • Grundfest H (1936) Effects of hydrostatic pressures upon the excitability, the recovery, and the potential sequence of frog nerve. Cold Spring Harbor Symp Quant Biol 5: 179–187

    Google Scholar 

  • Grundfest H, Cattell M (1935) Some effects of hydrostatic pressure on nerve action potentials. Am J Physiol 113: 56–57

    Google Scholar 

  • Halsey MJ (1982) Effects of high pressure on the central nervous system. Physiol Rev 62: 1341–1377

    PubMed  CAS  Google Scholar 

  • Harper AA, Macdonald AG, Wann KT (1981) The action of high hydrostatic pressure on the membrane currents of helix neurones. J Physiol 311: 325–339

    PubMed  CAS  Google Scholar 

  • Hatt H, Franke C, Dudel J (1988) Calcium dependent gating of the L-glutamate activated, excitatory synaptic channel on crayfish muscle. Pflügers Arch Eur J Physiol 411: 17–26

    CAS  Google Scholar 

  • Hatt H, Franke C, Dudel J (1988) Calcium dependent gating of the L-glutamate activated, excitatory synaptic channel on crayfish muscle. Pflügers Arch Eur J Physiol 411: 17–26

    CAS  Google Scholar 

  • Heinemann SH, Conti F, Stuhmer W, Neher E (1987a) Effects of hydrostatic pressure on membrane processes. Sodium channels, calcium channels, and exocytosis. J Gen Physiol 90: 765–778

    PubMed  CAS  Google Scholar 

  • Heinemann SH, Stuhmer W, Conti F (1987b) Single acetylcholine receptor channel currents recorded at high hydrostatic pressure. Proc Natl Acad Sci USA 84: 3229–3223

    PubMed  CAS  Google Scholar 

  • Henderson JV, Gilbert DL (1975) Slowing of ionic currents in the voltage clamped squid axon by helium pressure. Nature (Lond) 258: 351–352

    Google Scholar 

  • Henderson JV, Lowenhampt MT, Gilbert DG (1977) Helium pressure alteration of function in squid giant synapse. Undersea Biomed Res 4: 19–26

    PubMed  CAS  Google Scholar 

  • Heremans K (1982) High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng 11: 1–21

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116: 449–472

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    PubMed  CAS  Google Scholar 

  • Hong SK, Duffey ME, Goldinger JM (1984) Effect of high hydrostatic pressure on sodium transport across toad skin. Undersea Biomed Res 11: 37–47

    PubMed  CAS  Google Scholar 

  • Johnson FJ, Eyring H, Stover B (1974) The theory of rate processes in biology and medicine. John Wiley & Son, New York

    Google Scholar 

  • Johnson FH, Flagler EA (1950) Hydrostatic pressure reversal of narcosis in tadpoles. Science 112: 91–92

    PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195: 481–492

    PubMed  CAS  Google Scholar 

  • Kendig JJ (1984a) Ionic currents in vertebrate myelinated nerve at hyperbaric pressure. Am J Physiol 246 (1 pt 1): C84 — C90

    PubMed  CAS  Google Scholar 

  • Kendig JJ (1984b) Nitrogen narcosis and pressure reversal of anesthetic effects in node of Ranvier. Am J Physiol 246 (1 pt 1): C91 — C95

    PubMed  CAS  Google Scholar 

  • Kendig JJ, Cohen EN (1976) Neuromuscular function at hyperbaric pressures: pressure-anesthetic interactions. Am J Physiol 230: 1244–1249

    PubMed  CAS  Google Scholar 

  • Kendig JJ, Cohen EN (1977) Pressure antagonism to nerve conduction block by anesthetic agents. Anesthesiology 47: 6–10

    PubMed  CAS  Google Scholar 

  • Kendig JJ, Grossman Y (1986) Homogeneous and branching axons: differing responses to anesthetics and pressure. In: Roth SH, Miller KW (eds) Molecular and cellular mechanisms of anesthetics. Plenum, New York, pp 333–353

    Google Scholar 

  • Kendig JJ, Trudell JR, Cohen EN (1975) Effects of pressure and anesthetics on conduction and synaptic transmission. J Pharmacol Exp Ther 195: 216–224

    PubMed  CAS  Google Scholar 

  • Kendig JJ, Schneider TM, Cohen EN (1978a) Pressure, temperature, and repetitive impluse generation in crustacean axons. J Appl Physiol 45: 742–746

    PubMed  CAS  Google Scholar 

  • Kendig JJ, Schneider TM, Cohen EN (1978b) Anesthetics inhibit pressure-induced repetitive impulse generation. J Appl Physiol 45: 747–750

    PubMed  CAS  Google Scholar 

  • Kendig JJ, Grossman Y, Maclver MB (1988) Pressure reversal of anaesthesia: a synaptic mechanism. Br J Anaesthesiol 60: 806–816

    CAS  Google Scholar 

  • Lemos JR, Nowycky MC (1989) Two types of calcium channels coexist in peptide-releasing vertebrate nerve terminals. Neuron 2: 1419–1426

    PubMed  CAS  Google Scholar 

  • Lever MJ, Miller KW, Paton WDM, Smith EB (1971) Pressure reversal of anaesthesia. Nature (Lond) 231: 368–371

    CAS  Google Scholar 

  • Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pfliigers Arch Eur J Physiol 411: 137–146

    CAS  Google Scholar 

  • Macdonald AG (1982) Hydrostatic pressure physiology. In: Bennett PB, Elliott DH (eds) Physiology and medicine of diving, 3rd edn. Balliere Tindall, London, pp 157–188

    Google Scholar 

  • Mallart A (1984) Presynaptic currents in frog motor endings. Pflügers Arch Eur J Physiol 400: 8–13

    CAS  Google Scholar 

  • Mallart A (1985) Electrical current flow inside perineurial sheaths of mouse motor nerves. J Physiol 368: 565–575

    PubMed  CAS  Google Scholar 

  • Mastrangelo CJ, Kendig JJ, Trudell JR, Cohen EN (1979) Nerve membrane lipid fluidity: opposing effects of high pressure and ethanol. Undersea Biomed Res 6: 47–53.

    PubMed  CAS  Google Scholar 

  • Miller KW (1977) The opposing physiological effects of high pressure and inert gases. Fed Proc. 36: 1663–1667

    PubMed  CAS  Google Scholar 

  • Miller KW (1985) The nature of the site of general anesthesia. Int Rev Neurobiol 27: 1–61

    PubMed  CAS  Google Scholar 

  • Naquet C, Lemaire C, Rostain JC (1984) High pressure nervous syndrome: psychometric and clinico-electrophysiological correlations. Philos Trans R Soc Lond Ser B 304: 95–103

    CAS  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79: 6712–6716

    PubMed  CAS  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature (Lond) 260: 779–802

    Google Scholar 

  • Nicolls DG (1989) Release of glutamate, aspartate, and gamma-aminobutyric acid from isolated nerve terminals. J Neurochem 52: 331–341

    Google Scholar 

  • Otter T, Salmon ED (1985) Pressure-induced changes in Ca’-channel excitability in Paramecium. J Exp Biol 117: 29–43

    PubMed  CAS  Google Scholar 

  • Parmentier JL, Shrivastav BB, Bennett PB, Wilson KM (1979) Effect of interaction of volatile anesthetics and high hydrostatic pressure on central neurons. Undersea Biomed Res 6: 75–91

    PubMed  CAS  Google Scholar 

  • Parmentier JL, Shrivastav BB, Bennett BB (1981) Hydrostatic pressure reduces synaptic efficacy by inhibiting transmitter release. Undersea Biomed Res 8: 175–183

    PubMed  CAS  Google Scholar 

  • Parnas H, Segel LA (1982) Ways to discern the presynaptic effects of drugs on neurotransmitter release. J Theor Biol 94: 923–941

    PubMed  CAS  Google Scholar 

  • Parnas I, Dudel J, Grossman Y (1982a) Chronic removal of inhibitory axon alters excitatory transmission in a crustacean muscle fiber. J Neurophysiol 47: 1–10

    PubMed  CAS  Google Scholar 

  • Parnas I, Parnas H, Dudel J (1982b) Neurotransmitter release and its facilitation in crayfish. II. Duration of facilitation and removal processes of calcium from the terminal. Pflügers Arch Eur J Physiol 393: 232–236

    CAS  Google Scholar 

  • Parnas I, Parnas H, Dudel J (1982c) Neurotransmitter release and its facilitation in crayfish muscle. V. Basis for synapse differentiation of the fast and slow type in one axon. Pflügers Arch Eur J Physiol 395: 261–270

    CAS  Google Scholar 

  • Paton W, Elliott DH, Smith EB (eds) (1984) Diving and life at high pressures. Proc R Soc Discuss Meet 12 and 13 May 1983, R Soc, Lond

    Google Scholar 

  • Penner R, Dreyer F (1986) Two different presynaptic calcium currents in mouse motor nerve terminals. Pflügers Arch Eur J Physiol 406: 190–197

    CAS  Google Scholar 

  • Péqueux AJR, Gilles R (eds) (1985) High pressure effects on selected biological systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pusch M, Neher E (1988) Rates of diffusional exchange between small cells and a measuring patch pipette. Pflügers Arch Eur J Physiol 411: 204–211

    CAS  Google Scholar 

  • Rostain JC, Fructus X, Naquet R (1970) Etude preliminaire de l’effet des hautes pressions en atmosphère oxygène-hélium sur le Papio papio. Rev Neurol 122: 482–483

    PubMed  CAS  Google Scholar 

  • Rostain JC, Wardley-Smith B, Forni C, Halsey MJ (1986) Gamma-aminobutyric acid and the high pressure neurological syndrome. Neuropharmacology 25: 545–554

    PubMed  CAS  Google Scholar 

  • Roth SH, Smith RA, Paton WDM (1976) Pressure antagonism of anaesthetic-induced conduc-tion failure in frog peripheral nerve. Br J Anaesthesiol 48: 621–628

    CAS  Google Scholar 

  • Shelton CJ, Zhao DM, Inman N, Price DJ, Daniels S, Smith EB (1990) The effect of anaesthetics and pressure on a synaptic receptor from the mammalian central nervous system expressed in Xenopus oocytes. In: Drouet J, Risso JJ, Rostain JC (eds) Proc 2nd Int Meet High pressure biology, Pap No 12 Toulon, Fr, EASSM-CERB, Toulon

    Google Scholar 

  • Shrivastav BB, Parmentier JL, Bennett PB (1979) Hydrostatic pressure increases the steady state conductance in the squid giant axon. Biophys J 25: 15a.

    Google Scholar 

  • Shrivastav BB, Parmentier JL, Bennett PB (1981) A quantitative description of pressure-induced alterations in ionic channels of the squid giant axon. In: Bachrach AJ, Matzen MM (eds) Proc 7th Symp Underwater physiology, Undersea Med Soc Inc, pp 611–619

    Google Scholar 

  • Sigworth FJ (1986) The patch clamp technique is more useful than anyone had expected. Fed Proc 45: 2673–2677

    PubMed  CAS  Google Scholar 

  • Smith EB, Bowser-Riley F, Daniels S, Dunbar IT, Harrison CB, Paton WDM (1984) Species variation and the mechanism of pressure-anaesthetic interactions. Nature (Lond) 311: 56–57

    CAS  Google Scholar 

  • Smith RA, Dodson BA, Miller KW (1984) The interactions between pressure and anaesthetics. Philos Trans R Soc Lond Ser B 304 (1118): 69–84

    CAS  Google Scholar 

  • Southan AP, Wann KT (1989) High helium pressure modifies the repetitive discharge of CA1 pyramidal neurones in the rat hippocampus in vitro. J Physiol 418: 17 P

    Google Scholar 

  • Spyropoulos CS (1957a) Responses of single nerve fibers at different hydrostatic pressures. Am J Physiol 189: 214–218

    PubMed  CAS  Google Scholar 

  • Spyropoulos CS (1957b) The effects of hydrostatic pressure upon the normal and narcotized nerve fiber. J Gen Physiol 40: 849–857

    PubMed  CAS  Google Scholar 

  • Stanley EF (1989) Calcium currents in a vertebrate presynaptic nerve terminal: the chick ciliary ganglion calyx. Brain Res 505: 341–345

    PubMed  CAS  Google Scholar 

  • Trudell JR, Hubbell WL, Cohen EN (1973) Pressure reversal of anesthetic-induced disorder in spin-labeled phospholipid vesicles. Biochim Biophys Acta 291: 328–334

    PubMed  CAS  Google Scholar 

  • Tsien RW, Lipscomb D, Medison DV, Bely KR, Fox AP (1988) Multiple types of neural calcium channels and their selective modulation. TINS 11: 431–438

    PubMed  CAS  Google Scholar 

  • Wann KT, Macdonald AG, Harper AA (1979) The effects of high hydrostatic pressure on the electrical characteristics of helix neurons. Comp Biochem Physiol MA: 149–159

    Google Scholar 

  • Wann KT, Macdonald AG, Harper AA, Ashford Mil (1981) Transient versus steady-state effects of high hydrostatic pressure. In: Bachrach AJ, Matzen MM (eds) Underwater physiology, vol 7. Undersea Med Soc, Bethesda, pp 621–627

    Google Scholar 

  • Yau K-W (1976) Receptive fields, geometry, and conduction block of sensory neurons in the central nervous system of the leech. J Physiol 263: 513–538

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kendig, J.J., Grossman, Y., Heinemann, S.H. (1993). Ion Channels and Nerve Cell Function. In: Macdonald, A.G. (eds) Effects of High Pressure on Biological Systems. Advances in Comparative and Environmental Physiology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77115-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77115-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77117-0

  • Online ISBN: 978-3-642-77115-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics