Testing lead neurotoxicity with an in vitro model

  • N. Binding
  • U. Altrup
  • M. N. Said
  • E.-J. Speckmann
  • U. Witting
Conference paper

Abstract

Numerous hazardous substances show neurotoxic effects after acute incorporation as well as after chronic exposure. Some organic solvents for example are known to cause polyneuropathy (e.g. Konietzko 1981, Greeersen et al. 1984, McCunney 1988). Exposure to heavy metals such as mercury or lead may result in an impairment of the central as well as of the peripheral nervous system (e.g. Zielhuis 1975, Triebig et al. 1981). Since knowledge about neurotoxicity is rather incomplete, the need for experimental test systems to investigate the mechanisms involved is quite obvious (Triebig et al. 1989). Furthermore, a test system allowing for the prediction of neurotoxicity would be of great importance with regard to the prevention of — in some cases irreversible — neuronal damages.

Keywords

Zinc Toxicity Mercury Dementia Chlori 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altrup U (1987) Inputs and outputs of giant neurons B1 and B2 in the buccal ganglia of Helix pomatia: an electrophysiologicaf and morphological study. Brain Res 414:271–284CrossRefGoogle Scholar
  2. Altrup U, Lehmenkühler A, Madeja M, Speckmann E-J (1990b) Morphology and function of the identified neuron B3 in the buccal ganglia of Helix pomatia. Comp Biochem Physiol 97A:65–74CrossRefGoogle Scholar
  3. Altrup U, Madeja M, Speckmann E-J (1990a) Die Buccalganglien der Weinbergschnecke (Helix pomatia) als Modellnervensystem in der experimentellen Epilepsieforschung. EEG- Labor 12:12–25Google Scholar
  4. Araki S, Yokoyama K, Aono H, Murata K (1986) Psychologic performance in relation to central and peripheral nerve conduction in workers exposed to lead, zinc and copper. Am J Ind Med 9:535–542CrossRefGoogle Scholar
  5. Amvig E, Grandjean P, Beckmann J (1980) Neurotoxic effects of heavy lead exposure determined with psychological tests. Toxicol Lett 5:399–404CrossRefGoogle Scholar
  6. Audesirk G (1987) Effects of lead exposure on neuronal physiology and morphology in Lymnaea stagnalis. In: Neurobiology — molluscan models (Boer HH, Geraerts WPM, Joosse J (eds)). North-Holland Publishing Company, Amsterdam/Oxford/New York, 143–149Google Scholar
  7. Gregersen P, Angelsø B, Nielsen TE, Norgaard B, Uldal C (1984) Neurotoxic effects of organic solvents in exposed workers: an occupational, neurophysiological, and neurological investigation. Am J Ind Med 5:201–225CrossRefGoogle Scholar
  8. Hanninen H, Hemberg S, Mantere P, Vesanto R, Jalkanen M (1979) Psychological performance of subjects with low exposure to lead. J Occup Med 20:683–689Google Scholar
  9. Konietzko H (1981) Polyneuropathien durch organische Lösemittel. Arbeitsmed Sozialmed Präventivmed 247–249Google Scholar
  10. Landrigan PJ (1989) Toxicity of lead at low dose. Br J Ind Med 46:593–596Google Scholar
  11. McCunney RJ (1988) Diverse manifestations of trichloroethylene. Br J Ind Med 45:122–126Google Scholar
  12. Peters M, Altrup U (1984) Motor organization in pharynx of Helix pomatia. J Neurophysiol 52:389–409Google Scholar
  13. Seppäläinen AM, Hemberg S, Kock B (1979) Relationship between blood lead levels and nerve conduction velocities. Neurotoxicology 1:313–332Google Scholar
  14. Speckmann E-J, Caspers H (1973) Paroxysmal depolarization and changes in action potentials induced by pentylenetetrazol in isolated neurons of Helix pomatia. Epilepsia 14:397–408CrossRefGoogle Scholar
  15. Schulze H, Speckmann E-J, Kuhlmann D, Caspers H (1975) Topography and bioelectrical properties of identifiable neurons in the buccal ganglion of Helix pomatia. Neurosci Lett 1:277–281CrossRefGoogle Scholar
  16. Triebig G, Bleecker M, Gilioli R, O’Flynn RR (1989) International working group on the epidemiology of the chronic neurobehavioral effects of organic solvents. A need for further research. Int Arch Occup Environ Health 61:423–424CrossRefGoogle Scholar
  17. Triebig G, Schaller K-H, Valentin H (1981) Untersuchungen zur Neurotoxizität von Arbeitsstoffen. I. Messung der motorischen und sensorischen Nervenleitgeschwindigkeit bei beruflich Quecksilber-belasteten Personen. Int Arch Occup Environ Health 48:119–129CrossRefGoogle Scholar
  18. Valciukas JA, Lilis R, Fischbein A, Selikoff IJ, Eisinger J, Blumberg W (1978) Central nervous system dysfunction due to lead exposure. Science 201:465–467CrossRefGoogle Scholar
  19. Zielhuis RL (1975) Dose-response relationships for inorganic lead. II. Subjective and functional responses — chronic sequelae — no-response levels. Int Arch occup environ Health 35:19–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • N. Binding
    • 1
  • U. Altrup
    • 2
  • M. N. Said
    • 3
  • E.-J. Speckmann
    • 3
  • U. Witting
    • 1
  1. 1.Institut für Arbeitsmedizin der Universität MünsterGermany
  2. 2.Institut für Experimentelle Epilepsieforschung der Universität MünsterGermany
  3. 3.Institut für Physiologie der Universität MünsterGermany

Personalised recommendations