Monitoring of an rDNA B. subtilis in environmental samples

  • K. Smalla
  • M. Isemann
  • G. John
  • K.-H. Weege
  • K. Wendt
  • F. Niepold

Abstract

For an industrial large-scale production of alpha amylase with an rDNA B. subtilis a case study was performed in the former G.D.R. from 1986–1990. Unintended releases of production strains are expected to occur in most cases of large-scale fermentations under safety level 1 conditions. Dominant release routes are via air (exhaust air from aerobic fermentation), biomass (after separation of the production strain from the extracellular enzymes) and waste water (Smalla et al. 1991). Our investigations were focussed on monitoring the extent and routes of release, characterization of microbial composition of bioprocessing waste, the fate of rDNA B. subtilis in sterile and nonsterile environmental media (potential recipient habitats such as soil, river water or waste water) and transfer of rDNA to indigenous microbes.

Keywords

Biomass Nickel Hydrolysis Fermentation Starch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ford, S. and B.H. Olson (1988) Methods for detection of genetically engineered microorganisms in the environment. In: Advances in microbial ecology vol. 10 ed. K.C. Marshall. Plenum Press New York and London: 45–79Google Scholar
  2. Maniatis, T., E.F. Fritsch and J. Sambrook, eds. (1982) Molecular cloning. Cold Spring Harbor. New YorkGoogle Scholar
  3. Roszak, D.B. and R.R. Colwell (1987) Survival strategies of bacteria in natural environment. Microbiol. Rev. 51: 365–379Google Scholar
  4. Sayler, G.S. and A.C. Layton (1990) Environmental application of nucleic acid hybridization. Annu. Rev. Microbiol. 44: 625–648CrossRefGoogle Scholar
  5. Smalla, K., M. Isemann, G. John, K.-H. Weege, H. Backhaus and K. Wendt (1991) A risk assessment of industrial production of alpha-amylase with an rDNA production strain. In: Biological monitoring of genetically engineered plants and microbes. Eds.: D.R. Mac Kenzie and S.C. Henry. Proceedings of the Kiawah Island conference, 205–220Google Scholar
  6. Sommerville, C.C., I.T. Knight, W.L. Straube and R.R. Colwell (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl. Environ. Microbiol. 55: 548–554Google Scholar
  7. Steinborn, G. and J. Hofemeister (1984) Verfahren zur Herstellung von alpha-Amylase. WP DD 233 852 B1Google Scholar
  8. Trevors, J.T. and J.D. van Elsas (1989) A review of selected methods in environmental microbial genetics. Can. J. Microbiol. 35: 895–902CrossRefGoogle Scholar
  9. Van Elsas, J.D., L.S.van Overbeek and R. Fouchier (1991) A specific marker, pat, for studying the fate of introduced bacteria and their DNA in soil using a combination of detection techniques. Plant and Soil (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • K. Smalla
    • 1
  • M. Isemann
    • 2
  • G. John
    • 2
  • K.-H. Weege
    • 2
  • K. Wendt
    • 1
  • F. Niepold
    • 1
  1. 1.Institut für Biochemie und PflanzenvirologieBiologische Bundesanstalt für Land- und ForstwirtschaftBraunschweigGermany
  2. 2.Institut für HygieneMagdeburgGermany

Personalised recommendations