Advertisement

Pituitary Microcirculation Measured by Laser Doppler Flowmetry: Physiological and Clinical Aspects

  • R. Steinmeier
  • A. Dötterl
  • R. Fahlbusch
Conference paper
Part of the Advances in Neurosurgery book series (NEURO, volume 20)

Abstract

There is considerable controversy concerning the vascular supply and angioarchitecture of the anterior pituitary lobe (AL). Following the innovative studies of Wislocki and King [28] and Green and Harris [9], the concept of a dominant portal blood supply to the AL has been generally accepted and has led to significant progress in neuroendocrinological scientific work and understanding of hypothalamic-pituitary interactions. Experimental studies in animals clearly demonstrated a completely different level of microcirculation between anterior and posterior (PL) pituitary lobe, the latter exhibiting values exceeding the highest found in any other region of the brain [4, 7, 8, 12, 13, 15, 21, 22, 26, 27].

Keywords

Central Venous Pressure Heart Circ Posterior Lobe Spinal Cord Blood Flow Interpeak Latency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonner R, Nossal R (1981) Model for laser Doppler measurements of blood flow in tissue. Applied Optics 20:2097–2107PubMedCrossRefGoogle Scholar
  2. 2.
    Bonner RF, Clem TR, Bowen PD, Bowman RL (1981) Laser-Doppler continuous realtime monitor of pulsatile and mean blood flow in tissue microcirculation. In: Chen SH, Schu B, Nossal R (eds) Scattering techniques applied to supramolecular and nonequi-librium systems. Plenum Press, New York, pp 685–701Google Scholar
  3. 3.
    Borgos JA (1990) LDV blood flowmeter. In: Shepherd AP, Öberg PÅ (eds) Laser-Doppler blood flowmetry. Kluwer Academic Publishers, Boston, pp 73–92Google Scholar
  4. 4.
    David MA, Csernay L, László FA, Kovács K (1965) Hypohysial blood flow in rats after destruction of the pituitary stalk. Endocrinology 77:183–187CrossRefGoogle Scholar
  5. 5.
    DiResta GR, Kiel JW, Riedel GL, Kaplan P, Shepherd AP (1987) Hybrid blood flow probe for simultaneous H2 clearance and laser-Doppler velocimetry. Am J Physiol 253 (Gastrointest Liver Physiol 16):G573-G581PubMedGoogle Scholar
  6. 6.
    Eyre JA, Essex TJH, Flecknell PA, Bartholomew PH, Sinclair JI (1988) A comparison of measurements of cerebral blood flow in the rabbit using laser Doppler spectroscopy and radionuclide labelled microspheres. Clin Phys Physiol Meas 9:65–74PubMedCrossRefGoogle Scholar
  7. 7.
    Goldmann H (1961) Endocrine gland blood flow in the unanesthetized, unrestrained rat. J Appl Physiol 16:762–764Google Scholar
  8. 8.
    Goldmann H (1963) Effect of acute stress on the pituitary gland: endocrine gland blood flow. Endocrinology 72:588–591CrossRefGoogle Scholar
  9. 9.
    Green JD, Harris GW (1947) The neurovascular link between the neurohypophysis and adenohypophysis. J Endocrinol 5:136–146PubMedCrossRefGoogle Scholar
  10. 10.
    Haberl RL, Heizer ML, Marmarou A, Ellis EF (1989) Laser-Doppler assessment of brain microcirculation: effect of systemic alterations. Am J Physiol 256 (Heart Circ Physiol 25):H1247–H1254PubMedGoogle Scholar
  11. 11.
    Haberl RL, Heizer ML, Ellis EF (1985) Laser-Doppler assessment of brain microcirculation: effect of local alterations. Am J Physiol 256 (Heart Circ Physiol 25):H1255–H1260Google Scholar
  12. 12.
    Hanley DF, Wilson DA, Feldman MA, Traystman RJ (1988) Peripheral chemorecep-tor control of neurohypophysial blood flow. Am J Physiol 254 (Heart Circ Physiol 23):H742–H750PubMedGoogle Scholar
  13. 13.
    Kemeny AA, Jakubowski JA, Jefferson AA, Paztor E (1985) Blood flow and autoreg-ulation in rat pituitary gland. J Neurosurg 63:116–119PubMedCrossRefGoogle Scholar
  14. 14.
    Leclercq TA, Grisoli F (1983) Arterial blood supply of the normal human pituitary gland. An anatomical study. J Neurosurg 58:678–681PubMedCrossRefGoogle Scholar
  15. 15.
    Lichardus B, Albrecht I, Ponec J, Linhart L (1977) Water deprivation for 24 hours increases selectively blood flow in posterior pituitary of conscious rats. Endocrinol Exp 11:99–104PubMedGoogle Scholar
  16. 16.
    Lindsberg PJ, O’Neill JT, Paakkari IA, Hallenbeck JM, Feuerstein G (1989) Validation of laser-Doppler velocimetry in measurement of spinal cord blood flow. Am J Physiol 257 (Heart Circ Physiol 26):H674–H680PubMedGoogle Scholar
  17. 17.
    Nilsson GE (1984) Signal processor for laser Doppler tissue flowmeters. Med Biol Eng Comput 22:343–348PubMedCrossRefGoogle Scholar
  18. 18.
    Nilsson GE, Tenland T, Öberg PA (1980) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy. IEEE Trans Biomed Eng 27:12–19PubMedCrossRefGoogle Scholar
  19. 19.
    Nilsson GE, Tenland T, Öberg PA (1980) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27:597–604PubMedCrossRefGoogle Scholar
  20. 20.
    Nilsson GE, Salerud EG, Tenland T, Öberg PA (1982) Laser-Doppler tissue blood-flow measurements. In: Sattelle DB, Lee WI, Ware BR (eds) Biomedical applications of laser light scattering. Elsevier Biomedical Press, New York, pp 335–348Google Scholar
  21. 21.
    Page RB, Funsch DJ, Brennan RW, Hernandez MJ (1981) Regional neurohypophyseal blood flow and its control in adult sheep. Am J Physiol 241 (Regulatory Integrative Comp Physiol 10):R36–R43PubMedGoogle Scholar
  22. 22.
    Porter JC, Hines MFM, Smith KR, Repass RL, Smith AJK (1967) Quantitative evaluation of local blood flow of the adenohypophysis in rats. Endocrinology 80:583–598PubMedCrossRefGoogle Scholar
  23. 23.
    Skarphedinsson JO, Harding H, Thorén P, Hässle AB (1988) Repeated measurements of cerebral blood flow in rats. Comparisons between the hydrogen clearance method and laser Doppler flowmetry. Acta Physiol Scand 134:133–142PubMedCrossRefGoogle Scholar
  24. 24.
    Steinmeier R, Fahlbusch R, Powers AD, Dötterl A, Buchfelder M (1991) Pituitary microcirculation: Physiological aspects and clinical implications. A laser Doppler flow study during transsphenoidal adenomectomy. Neurosurgery 29:47–54PubMedCrossRefGoogle Scholar
  25. 25.
    Stern MD (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58PubMedCrossRefGoogle Scholar
  26. 26.
    Takaoda Y, White RJ, Billiar RB, Little BA (1977) Regional arterial blood flow in the primate pituitary gland. Surg Forum 28:464–466Google Scholar
  27. 27.
    Vella LM, Hanley DF, Wilson DA, Traystman RJ (1989) Peripheral baroreceptor control of neurohypophysial blood flow during hemorrhage. Am J Physiol 257 (Heart Circ Physiol 26):H1498–H1506PubMedGoogle Scholar
  28. 28.
    Wislocki GB, King LS (1936) The permeability of the hypophysis and hypothalamus to vital dyes, with a study of the hypophyseal vascular supply. Am J Anat 58:421–472CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • R. Steinmeier
  • A. Dötterl
  • R. Fahlbusch
    • 1
  1. 1.Neurochirurgische Klinik der Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations