Skip to main content

Noninvasive Testing of Vasomotor Reserve

  • Conference paper
Stimulated Cerebral Blood Flow

Abstract

Critically reduced perfusion pressure in the brain arteries may lead to ischemic damage in certain vulnerable areas (Bogousslavsky and Regli 1986; Leblanc et al. 1987; Ringelstein et al. 1983; Yamaguchi et al. 1979; Zülch 1961). The perfusion pressure of the brain cannot, however, be measured directly in man. Indirect parameters are the regional cerebral blood flow (rCBF) versus regional cerebral blood volume (rCBV) ratio (Gibbs et al. 1984), or the oxygen extraction ratio (Gibbs et al. 1984; Kanno et al. 1988; Levine et al. 1988) documented either by SPECT or by PET imaging. Another approach is to measure the reactivity of the cerebral vasculature to vasodilating stimuli (CO2, acetazolamide). This may be done by measuring an increase in blood flow or blood flow velocity by either rCBF techniques or transcranial Doppler sonography (TCD) (Kanno et al. 1988; Norrving et al. 1982; Ringelstein et al. 1988; Wodarz 1980; see also Dahl et al. and Haberl et al. in this volume).

This project was in part supported by Verein zur Bekämpfung der Gefäßkrankheiten e.V., Engelskirchen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaslid R (1987) Visually evoked dynamic blood flow response of the human cerebral circulation. Stroke 18:771–775

    Article  PubMed  CAS  Google Scholar 

  • Arnolds BJ, von Reutern GM (1986) Transcranial Doppler sonography. Examination technique and normal reference values. Ultrasound Med Biol 12:115–123

    Article  PubMed  CAS  Google Scholar 

  • Bogousslavsky J, Regli F (1986) Unilateral watershed cerebral infarcts. Neurology 36:373–377

    PubMed  CAS  Google Scholar 

  • Breslau PJ, Knox R, Fell G, Greene FM, Thiele BL, Strandness BE Jr (1982) Effect of carbon dioxide on flow patterns in normal extracranial arteries. J Surg Res 32:97–103

    Article  PubMed  CAS  Google Scholar 

  • Caplan LR, Sergay S (1976) Positional cerebral ischemia. J Neurol Neurosurg Psychiatry 39:385–391

    Article  PubMed  CAS  Google Scholar 

  • Copetto JR, Wand M, Bear L, Sciarra R (1985) Neovascular glaucoma and carotid artery obstructive disease. Am J Ophthalmol 99:567–570

    Google Scholar 

  • Gibbs JM, Wise RJS, Leenders KL, Jones T (1984) Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1:310–314

    Article  PubMed  CAS  Google Scholar 

  • Harper AM, Glass HI (1966) Effect of alteration in the arterial carbon dioxide tension on the blood flow to the cerebral cortex at normal and low arterial blood pressure. J Neurol Neurosurg Psychiatry 28:449–452

    Article  Google Scholar 

  • Kanno I, Uemura K, Higano S, Murakami M, Ieda H, Miura S, Shishido F, Inugami A, Sayama I (1988) Oxygen extraction fraction at maximally vasodilated tissue in the ischemic brain estimated from the regional C02-responsiveness measured by positron emission tomography. J Cereb Blood Flow Metab 8:227–235

    Article  PubMed  CAS  Google Scholar 

  • Kety SS, Schmidt CF (1948) The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27:448–492

    Google Scholar 

  • Keunen RWM, Ackerstaff RGA, Stegeman DF, Schulte, BPM (1989) The impact of internal carotid artery occlusion and of the integrity of the circle of Willis on cerebral vasomotor reactivity - a transcranial Doppler study. In: Meyer JS, et al. (eds) Cerebral vascular disease. Elsevier, Amsterdam, pp 85–88

    Google Scholar 

  • Kindt GW, Humans JR, Convey LW (1969) The use of ultrasound to determine cerebral arterial reserve. J Neurösurg 31:544–549

    Article  PubMed  CAS  Google Scholar 

  • Kirkham FJ, Padayachee TS, Parsons S, Seargeant LS, House RF, Gosling RG (1986) Transcranial measurement of blood flow velocities in the basal cerebral arteries using pulsed Doppler ultrasound: velocity as an index of flow. Ultrasound Med Biol 12:15–21

    Article  PubMed  CAS  Google Scholar 

  • Leblanc R, Yamamoto YL, Tyler JL, Dikscic M, Hakim A (1987) Borderzone ischemia. Ann Neurol 22:707–713

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Sunderland JJ, Lagreze HL, Niekies RJ, Rowe BR, Turski PA (1988) Cerebral perfusion reserve indexes determined by fluoromethane positron emission scanning. Stroke 19:19–27

    Article  PubMed  CAS  Google Scholar 

  • Norrving B, Nilsson B, Risberg J (1982) rCBF in patients with carotid occlusion - resting and hypercapnic flow related to collateral pattern. Stroke 13:155–162

    Article  PubMed  CAS  Google Scholar 

  • Ringelstein EB, Zeumer H, Angelou D (1983) The pathogenesis of strokes from internal carotid artery occlusion. Diagnostic and therapeutic implications. Stroke 14:867–875

    Article  PubMed  CAS  Google Scholar 

  • Ringelstein EB, Sievers C, Ecker S, Schneider PA, Otis SM (1988) Non-invasive assessment of C02-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 19:936–969

    Article  Google Scholar 

  • Ringelstein EB (1989) A practical guide to transcranial Doppler sonography. In: Weinberger J (ed) Non-invasive assessment of the cerebral circulation in cerebrovascular disease. Frontiers of clinical neuroscience theories. Liss, New York, pp 75–121

    Google Scholar 

  • Ringelstein EB, Koschorke S, Holling A, Thron A, Lambertz H, Minale C (1989) Computerized tomography patterns of proven embolic brain infarctions. Ann Neurol 26:759–765

    Article  PubMed  CAS  Google Scholar 

  • Ringelstein EB, Kahlscheuer B, Niggemeyer E, Otis SM (1990) Transcranial Doppler sonography: anatomical landmarks and normal velocity values. Ultrasound Med Biol 16:745–761

    Article  PubMed  CAS  Google Scholar 

  • Ringelstein EB, van Eyck S, Mertens I (1991a) Evaluation of cerebral vasomotor reactivity by various vasodilating stimuli: comparison of C02 with acetazolamide. J Cereb Blood Flow Metab (in press)

    Google Scholar 

  • Ringelstein EB, Weiller C, Weckesser M, Weckesser S (1991b) Cerebral vasomotor reactivity is significantly reduced in low-flow as compared to thromboembolic infarctions: the key role of the circle of Willis. J Neurol Sci (in press)

    Google Scholar 

  • Ringelstein EB (1991) Physiologic testing of vasomotor reserve. In: Newell DW, Aaslid R (eds) Transcranial Doppler sonograpy. Clinical aspects. Raven, New York (in press)

    Google Scholar 

  • Valk J (1980) Computed tomography and cerebral infarctions. Raven, New York

    Google Scholar 

  • Weiller C, Ringelstein EB, Reiche W, Büll U (1991) Clinical and hemodynamical aspects of low-flow infarcts. Stroke 22:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Widder B, Paulat K, Hackspacher J, Mayr E (1986) Transcranial Doppler C02-test for the detection of hemodynamically critical carotid artery stenosis and occlusions. Eur Arch Psychiatry Neurol Sci 236:162–168

    Article  PubMed  CAS  Google Scholar 

  • Wodarz R (1980) Watershed infarctions and computed tomography: topographic study in cases with stenosis or occlusion of the carotid artery. Neuroradiology 19:245–248

    PubMed  CAS  Google Scholar 

  • Yamaguchi F, Meyer JS, Sakai F, Yamamoto M (1979) Normal human aging and cerebral vasoconstrictive responses to hypocapnia. J Neurol Sci 44:87–94

    Article  PubMed  CAS  Google Scholar 

  • Yonas H, Gurr D, Latchav RE, Wolfson SD Jr (1987) Xenon computed tomographic blood flow mapping. In: Wood JH (ed) Cerebral blood flow. Physiologic and clinical aspects. McGraw- Hill, New York, pp 220–245

    Google Scholar 

  • Young LH, Appen RE (1981) Ischemic oculopathy: a manifestation of carotid artery disease. Arch Neurol 38:358–361

    PubMed  CAS  Google Scholar 

  • Zülch KJ (1961) Die Pathogenese von Massenblutungen und Erweichungen unter besonderer Berücksichtigung klinischer Gesichtspunkte. Acta Neurochir [Suppl] (Wien) 7:51–117

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Ringelstein, E.B. (1992). Noninvasive Testing of Vasomotor Reserve. In: Schmiedek, P., Einhäupl, K., Kirsch, CM. (eds) Stimulated Cerebral Blood Flow. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77102-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77102-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77104-0

  • Online ISBN: 978-3-642-77102-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics