Skip to main content
Book cover

Glaukom pp 5–33Cite as

Kammerwasserdynamik I: Anatomie und Physiologie

  • Chapter
  • 50 Accesses

Zusammenfassung

Die Beschäftigung mit Glaukom konzentriert sich überwiegend auf die Konsequenzen des erhöhten Augeninnendruckes (IOD). Es ist deshalb nur zu logisch, das Studium der Glaukomerkrankungen damit zu beginnen, welche physiologischen Parameter das Augeninnendruckniveau kontrollieren, was gleichbedeutend ist mit den dynamischen Regelgrößen der Kammerwasserdynamik.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Hogan, MF, Alvarado, JA, Weddell, JE: Histology of the Human Eye. Philadelphia, WB Saunders, 1971, p. 269.

    Google Scholar 

  2. Morrison, JC, Van Buskirk, EM: Anterior collateral circulation in the primate eye. Ophthalmology 90:707,1983.

    PubMed  CAS  Google Scholar 

  3. Woodlief, NF: Initial observations on the ocular microcirculation in man. I. The anterior segment and extraocular muscles. Arch Ophthal 98:1268,1980.

    PubMed  CAS  Google Scholar 

  4. Morrison, JC, DeFrank, MP, Van Buskirk, EM: Regional microvascular anatomy of the rabbit ciliary body. Invest Ophthal Vis Sci 28:1314,1987.

    PubMed  CAS  Google Scholar 

  5. Morrison, JC, DeFrank, MP, Van Buskirk, EM: Comparative microvascular anatomy of mammalian ciliary processes. Invest Ophthal Vis Sci 28:1325,1987.

    PubMed  CAS  Google Scholar 

  6. Talusan, ED, Schwartz, B: Fluorescein angiography. Demonstration of flow patterns of anterior ciliary arteries. Arch Ophthal 99:1074,1981.

    PubMed  CAS  Google Scholar 

  7. Sakimoto, G, Schwartz, B: Decrease of anterior ciliary arterial pressure with increased ocular pressure. Invest Ophthal Vis Sci 25:992,1984.

    PubMed  CAS  Google Scholar 

  8. Nanba, K, Schwartz, B: Increased diameter of the anterior ciliary artery with increased intraocular pressure. Arch Ophthal 104:1652,1986.

    PubMed  CAS  Google Scholar 

  9. Morrison, JC, Van Buskirk, EM: Ciliary process microvasculature of the primate eye. Am J Ophthal 97:372,1984.

    PubMed  CAS  Google Scholar 

  10. Smelser, GK: Electron microscopy of a typical epithelial cell and of the normal human ciliary process. Trans Am Acad Ophthal Otol 70:738,1966.

    CAS  Google Scholar 

  11. Streeten, BW, Licari, PA: The zonules and the elastic microfibrillar system in the ciliary body. Invest Ophthal Vis Sci 24:667,1983.

    PubMed  CAS  Google Scholar 

  12. Tormey, JMcD: The ciliary epithelium: an attempt to correlate structure and function. Trans Am Acad Ophthal Otol 70:755,1966.

    CAS  Google Scholar 

  13. Holmberg, A: Ultrastructure of the ciliary epithelium. Arch Ophthal 62:935,1959.

    PubMed  CAS  Google Scholar 

  14. Holmberg, A: Differences in ultrastructure of normal human and rabbit ciliary epithelium. Arch Ophthal 62:952, 1959.

    PubMed  CAS  Google Scholar 

  15. Raviola, G, Raviola, E: Intercellular junctions in the ciliary epithelium. Invest Ophthal Vis Sci 17:958, 1978.

    PubMed  CAS  Google Scholar 

  16. Smith, RL, Raviola, G: The structural basis of the bloodaqueous barrier in the chicken eye. Invest Ophthal Vis Sci 24:326, 1983.

    PubMed  CAS  Google Scholar 

  17. Green, K: Physiology and pharmacology of aqueous humor inflow. Surv Ophthal 29:208, 1984.

    CAS  Google Scholar 

  18. Green, K, Bountra, C, Georgiou, P, House, CR: An electrophysiologic study of rabbit ciliary epithelium. Invest Ophthal Vis Sci 26:371, 1985.

    PubMed  CAS  Google Scholar 

  19. Cunha-Vas, JG: The blood-ocular barriers. Invest Ophthal Vis Sci 17:1037, 1978.

    Google Scholar 

  20. Pederson, JE: Fluid permeability of monkey ciliary epithelium in vivo. Invest Ophthal Vis Sci 23:176, 1982.

    PubMed  CAS  Google Scholar 

  21. Wulle, KG: Zelldifferenzierungen im Ciliarepithel während der menschlichen Fetalentwicklung und ihre Be-ziehungen zur Kammerwasserbildung. Graefe’s Arch Ophthal 172:170, 1967.

    CAS  Google Scholar 

  22. Richardson, KT: Cellular response to drugs affecting aqueous dynamics. Arch Ophthal 89:65, 1973.

    PubMed  CAS  Google Scholar 

  23. Uusitalo, R, Palkama, A, Stjernschantz, J: An electron microscopical study of the bloodqueous barrier in the ciliary body and iris of the rabbit. Exp Eye Res 17:49, 1973.

    PubMed  CAS  Google Scholar 

  24. Smith, RS, Rudt, LA: Ultrastructural studies of the bloodaqueous barrier. 2. The barrier to horseradish peroxidase in primates. Am J Ophthal 76:937, 1973.

    PubMed  CAS  Google Scholar 

  25. Peress, NS, Tompkins, DC: Pericapillary permeability of the ciliary processes. Role of molecular charge. Invest Ophthal Vis Sci 23:168, 1982.

    PubMed  CAS  Google Scholar 

  26. Macri, JF, Cevario, SJ: The formation and inhibition of aqueous humor production. Arch Ophthal 96:1664, 1978.

    PubMed  CAS  Google Scholar 

  27. Farahbakhsh, NA, Fian, GL: Volume regulation of nonpigmented cells from ciliary epithelium. Invest Ophthal Vis Sci 28:934, 1987.

    PubMed  CAS  Google Scholar 

  28. Becker, B: The effect of hypothermia on aqueous humor dynamics. III. Turnover of ascorbate and sodium. Am J Ophthal 51:1032, 1961.

    PubMed  CAS  Google Scholar 

  29. Berggren, L: Effect of composition of medium and of metabolic inhibitors on secretion in vitro by the ciliary processes of the rabbit eye. Invest Ophthal 4:83, 1965.

    PubMed  CAS  Google Scholar 

  30. Sears, ML: The aqueous. In: Adler’s Physiology of the Eye, 6th ed., Moses, RA, ed. CV Mosby, St. Louis, 1975, p. 232.

    Google Scholar 

  31. Bonting, SL, Becker, B: Studies on sodium-potassium activated adenosinetriphosphatase. XIV. Inhibition of enzyme activity and aqueous humor flow in the rabbit eye after intravitreal injection of ouabain. Invest Ophthal 3:523, 1964.

    PubMed  CAS  Google Scholar 

  32. Cole, DF: Some effects of decreased plasma sodium concentration on the composition and tension of the aqueous humor. Br J Ophthal 43:268, 1959.

    CAS  Google Scholar 

  33. Holland, MG, Gipson, CC: Chloride ion transport in the isolated ciliary body. Invest Ophthal 9:20, 1970.

    PubMed  CAS  Google Scholar 

  34. Holland, MG: Chloride ion transport in the isolated ciliary body. II. Ion substitution experiments. Invest Ophthal 9:30, 1970.

    PubMed  CAS  Google Scholar 

  35. Bito, L, Davson, H: Steady-state concentrations of potassium in the ocular fluids. Exp Eye Res 3:283, 1964.

    PubMed  CAS  Google Scholar 

  36. Helbig, H, Korbmacher, C, Wohlfarth, J, et al: Electrical membrane properties of a cell clone derived from human nonpigmented ciliary epithelium. Invest Ophthal Vis Sci 30:882, 1989.

    PubMed  CAS  Google Scholar 

  37. Chu, T-C, Candia, O A: Electrically silent Na+ and Cl fluxes across the rabbit ciliary epithelium. Invest Ophthal Vis Sci 29:594, 1988.

    PubMed  CAS  Google Scholar 

  38. Chu, T-C, Candia, O A: Active transport of ascorbate across the isolated rabbit ciliary epithelium. Invest Ophthal Vis Sci 29:594, 1988.

    PubMed  CAS  Google Scholar 

  39. Reddy, VN: Dynamics of transport systems in the eye. Invest Ophthal Vis Sci 18:1000, 1979.

    PubMed  CAS  Google Scholar 

  40. Maren, TH: The rates of movement of Na+, Cl, and HCO3 from plasma to posterior chamber: effect of acetazolamide and relation to the treatment of glaucoma. Invest Ophthal 15:356, 1976.

    PubMed  CAS  Google Scholar 

  41. Cole, DF: Effects of some metabolic inhibitors upon the formation of the aqueous humor in rabbits. Br J Ophthal 44:739, 1960.

    CAS  Google Scholar 

  42. Hara, K, Lutjen-Drecoll, E, Prestele, H, Rohen, JW: Structural differences between regions of the ciliary body in primates. Invest Ophthal Vis Sci 16:912, 1977.

    PubMed  CAS  Google Scholar 

  43. Ober, M, Rohen, JW: Regional differences in the fine structure of the ciliary epithelium related to accommodation. Invest Ophthal Vis Sci 18:655, 1979.

    PubMed  CAS  Google Scholar 

  44. Mizuno, K, Asaoka, M: Cycloscopy and fluorescein cycloscopy. Invest Ophthal 15:561, 1976.

    PubMed  CAS  Google Scholar 

  45. Lutjen-Drecoll, E, Lonnerholm, G, Eichhorn, M: Carbonic anhydrase distribution in the human and monkey eye by light and electron microscopy. Graefe’s Arch Ophthal 220:285, 1983.

    CAS  Google Scholar 

  46. Russman, W: Levels of glycolytic enzyme activity in the ciliary epithelium prepared from bovine eyes. Ophthal Res 2:205, 1971.

    Google Scholar 

  47. Feeney, L, Mixon, R: Localization of 35sulfated macromolecules at the site of active transport in the ciliary processes. Invest Ophthal 13:882, 1974.

    PubMed  CAS  Google Scholar 

  48. Feeney, L, Mixon, RN: Sulf ate and galactose metabolism in differentiating ciliary body and iris epithelia: autoradiographic and ultrastructural studies. Invest Ophthal 14:364, 1975.

    PubMed  CAS  Google Scholar 

  49. Krupin, T, Wax, M, Moolchandani, J: Aqueous production. Trans Ophthal Soc UK 105:156, 1986.

    PubMed  Google Scholar 

  50. Raviola, G: Evidence for a secretory process, distinct from that of the aqueous humor, in the ciliary epithelium of Macaca mulatta. Trans Ophthal Soc UK 105:140, 1986.

    PubMed  Google Scholar 

  51. Brubaker, RF: The flow of aqueous humor in the human eye. Trans Am Ophthal Soc 80:391, 1982.

    PubMed  CAS  Google Scholar 

  52. Brubaker, RF, Kupfer, C: Determination of pseudofacility in the eye of the rhesus monkey. Arch Ophthal 75:693, 1966.

    PubMed  CAS  Google Scholar 

  53. Kupfer, C, Sanderson, P: Determination of pseudofacility in the eye of man. Arch Ophthal 80:194, 1968.

    PubMed  CAS  Google Scholar 

  54. Bill, A: Aspects of suppressability of aqueous humour formation. Doc Ophthal 26:73, 1969.

    CAS  Google Scholar 

  55. Brubaker, RF: The measurement of pseudofacility and true facility by constant pressure perfusion in the normal rhesus monkey eye. Invest Ophthal 9:42, 1970.

    PubMed  CAS  Google Scholar 

  56. Leydhecker, W, Rehak, S, Mathyl, J: Investigations on homeostasis: the effect of experimental changes of pressure on the production of aqueous humour in the living rabbit eye. Klin Monatsbl Augenheilkd 159:427, 1971.

    PubMed  CAS  Google Scholar 

  57. Kupfer, C, Ross, K: Studies of aqueous humor dynamics in man. 1. Measurements in young normal subjects. Invest Ophthal 10:518, 1971.

    PubMed  CAS  Google Scholar 

  58. Bill, A: Effects of longstanding stepwise increments in eye pressure on the rate of aqueous humor formation in a primate (Cercopithecus ethiops). Exp Eye Res 12:184, 1971.

    PubMed  CAS  Google Scholar 

  59. Carlson, KH, McLaren, JW, Topper, JE, Brubaker, RF: Effeet of body positions on intraocular pressure and aqueous flow. Invest Ophthal Vis Sci 28:1653, 1985.

    Google Scholar 

  60. Moses, RA, Grodzki, WJ Jr, Carras, PL: Pseudofacility. Arch Ophthal 103:1653, 1985.

    CAS  Google Scholar 

  61. Brown, JD, Brubaker, RF: A study of the relation between intraocular pressure and aqueous humor flow in the pigment dispersion syndrome. Ophthalmology 96:1468, 1989.

    PubMed  CAS  Google Scholar 

  62. Becker, B: The decline in aqueous secretion and outflow facility with age. Am J Ophthal 46:731, 1958.

    PubMed  CAS  Google Scholar 

  63. Brubaker, RF, Nagtaki, S, Townsend, DJ, et al: The effect of age on aqueous humor formation in man. Ophthalmology 88:283, 1981.

    PubMed  CAS  Google Scholar 

  64. Hayashi, M, Yablonski, ME, Boxrud, C, et al: Decreased formation of aqueous humour in insulin-dependent diabetic patients. Br J Ophthal 73:621, 1989.

    CAS  Google Scholar 

  65. Reiss, GR, Lee, DA, Topper, JE, Brubaker, RF: Aqueous humor flow during sleep. Invest Ophthal Vis Sci 25:776, 1984.

    PubMed  CAS  Google Scholar 

  66. McLaren, JW, Trocme, SD, Relf, S, Brubaker, RF: Rate of flow of aqueous humor determined from measurements of aqueous flare. Invest Ophthal Vis Sci 31:339, 1990.

    PubMed  CAS  Google Scholar 

  67. Topper, JE, Brubaker, RF: Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthal Vis Sci 26:1315, 1985.

    PubMed  CAS  Google Scholar 

  68. Gharagozloo, NZ, Larson, RS, Kullerstrand, LJ, Brubaker, RF: Terbutaline stimulates aqueous humor flow in human during sleep. Arch Ophthal 106:1218, 1988.

    PubMed  CAS  Google Scholar 

  69. Pederson, JE: Ocular hypotony. Trans Ophthal Soc UK 105:220, 1986.

    PubMed  Google Scholar 

  70. Howes, EL, Cruse, VK: The structural basis of altered vascular permeability following intraocular inflammation. Arch Ophthal 96:1668, 1978.

    PubMed  Google Scholar 

  71. Dobbie, JG: A study of the intraocular fluid dynamics in retinal detachment. Arch Ophthal 69:53, 1963.

    Google Scholar 

  72. Cole, DF: Aqueous and ciliary body. In: Biochemistry of the Eye, Graymore, CN, ed. Academic Press, London, 1970, p. 114.

    Google Scholar 

  73. De Berardinis, E, Tieri, O, Iuglio, N, Polzella, A: The composition of the aqueous humour of man in aphakia. Acta Ophthal 44:64, 1966.

    PubMed  Google Scholar 

  74. Kinsey, VE: Comparative chemistry of aqueous humor in posterior and anterior chamber of rabbit eye. Its physiologic significance. Arch Ophthal 50:401, 1953.

    CAS  Google Scholar 

  75. Raviola, G, Butler, JM: Asymmetric distribution of charged domains on the two fronts of the endothelium of iris blood vessels. Invest Ophthal Vis Sci 26:597, 1985.

    PubMed  CAS  Google Scholar 

  76. Freddo, TF, Raviola, G: The homogeneous structure of blood vessels in the vascular tree of Macaca mulatta iris. Invest Ophthal Vis Sci 22:279, 1982.

    PubMed  CAS  Google Scholar 

  77. Freddo, TF, Raviola, G: Freeze-fracture analysis of the interendothelial junctions in the blood vessels of the iris in Macaca mulatta. Invest Ophthal Vis Sci 23:154, 1982.

    PubMed  CAS  Google Scholar 

  78. Reddy, DVN: Chemical composition of normal aqueous humor. In: Biochemistry of the Eye, Dardenna, MU, Nordmann, J, eds. Karger, Basel, 1968, p. 167.

    Google Scholar 

  79. Becker, B: Chemical composition of human aqueous humor. Effects of acetazolamide. Arch Ophthal 57:793, 1957.

    CAS  Google Scholar 

  80. De Berardinis, E, Tieri, O, Polzella, A, Iuglio, N: The chemical composition of the human aqueous humour in normal and pathological conditions. Exp Eye Res 4:179, 1965.

    PubMed  Google Scholar 

  81. Kinsey, VE, Reddy, DVN: Chemistry and dynamics of aqueous humor. In: The Rabbit in Eye Research, Prince, JH, ed. Charles C Thomas, Springfield, 111., 1964, p. 218.

    Google Scholar 

  82. Reiss, GR, Werness, PG, Zollman, PE, Brubaker, RF: Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Arch Ophthal 104:753, 1986.

    PubMed  CAS  Google Scholar 

  83. Freddo, TF, Bartels, SP, Barsotti, MF, Kamm, RD: The source of proteins in the aqueous humor of the normal rabbit. Invest Ophthal Vis Sci 31:125, 1990.

    PubMed  CAS  Google Scholar 

  84. Pavao, AF, Lee, DA, Ethier, CR, et al: Two-dimensional gel electrophoresis of calf aqueous humor, serum, and filterbound proteins. Invest Ophthal Vis Sci 30:731, 1989.

    PubMed  CAS  Google Scholar 

  85. Ethier, CR, Kamm, RD, Johnson, M, et al: Further studies on the flow of aqueous humor through microporous filters. Invest Ophthal Vis Sci 30:739, 1989.

    PubMed  CAS  Google Scholar 

  86. Sen, DK, Sarin, GS, Saha, K: Immunoglobulins in human aqueous humour. Br J Ophthal 61:216, 1977.

    CAS  Google Scholar 

  87. Okisaka, S: Effects of paracentesis on the blood-aqueous barrier: a light and electron microscopic study on cynomolgus monkey. Invest Ophthal 15:824, 1976.

    PubMed  CAS  Google Scholar 

  88. Bartels, SP, Pederson, JE, Gaasterland, DE, Armaly, MF: Sites of breakdown of the blood-aqueous barrier after paracentesis of the rhesus monkey eye. Invest Ophthal Vis Sci 18:1050, 1979.

    PubMed  CAS  Google Scholar 

  89. Dickinson, JC, Durham, DG, Hamilton, PB: Ion exchange chromatography of free amino acids in aqueous fluid and lens of the human eye. Invest Ophthal 7:551, 1968.

    PubMed  CAS  Google Scholar 

  90. Davson, H, Luck CP: A comparative study of the total carbon dioxide in the ocular fluids, cerebrospinal fluid, and plasma of some mammalian species. J Physiol 132:454, 1956.

    PubMed  CAS  Google Scholar 

  91. Laurent, UBG: Hyaluronate in human aqueous humor. Arch Ophthal 101:129, 1983.

    PubMed  CAS  Google Scholar 

  92. Trope, GE, Rumley, AG: Catecholamines in human aqueous humor. Invest Ophthal Vis Sci 26:399, 1985.

    PubMed  CAS  Google Scholar 

  93. Khodadoust, AA, Stark, WJ, Bell, WR: Coagulation properties of intraocular humors and cerebrospinal fluid. Invest Ophthal Vis Sci 24:1616, 1983.

    PubMed  CAS  Google Scholar 

  94. Tripathi, RC, Park, JK, Tripathi, BJ, Millard, CB: Tissue plasminogen activator in human aqueous humor and its possible therapeutic significance. Am J Ophthal 106:719, 1988.

    PubMed  CAS  Google Scholar 

  95. Vadillo-Ortega, F, Gonzalez-Avila, G, Chevez, P, et al: A latent collagenase in human aqueous humor. Invest Ophthal Vis Sci 30:332, 1989.

    PubMed  CAS  Google Scholar 

  96. Jocson, VL, Sears, ML: Experimental aqueous perfusion in enucleated human eyes. Arch Ophthal 86:65, 1971.

    PubMed  CAS  Google Scholar 

  97. Bill, A, Phillips, CI: Uveoscleral drainage of aqueous humour in human eyes. Exp Eye Res 12:275,1971.

    PubMed  CAS  Google Scholar 

  98. Pederson, JE, Gaasterland, DE, MacLellan, HM: Uveoscleral aqueous outflow in the rhesus monkey: importance of uveal reabsorption. Invest Ophthal Vis Sci 16:1008, 1977.

    PubMed  CAS  Google Scholar 

  99. Inomata, H, Bill, A: Exit sites of uveoscleral flow of aqueous humor in cynomolgus monkey eyes. Exp Eye Res 25:113, 1977.

    PubMed  CAS  Google Scholar 

  100. Sherman, SH, Green, K, Laties, AM: The fate of anterior chamber fluorescein in the monkey eye. I. The anterior chamber outflow pathways. Exp Eye Res 27:159, 1978.

    PubMed  CAS  Google Scholar 

  101. Inomata, H, Bill, A, Smelser, GK: Unconventional routes of aqueous humor outflow in cynomolgus monkey (Macaca irus). Am J Ophthal 73:893, 1972.

    PubMed  CAS  Google Scholar 

  102. McMaster, PRB, Macri, FJ: Secondary aqueous humor out flow pathways in the rabbit, cat, and monkey. Arch Ophthal 79:297, 1968.

    PubMed  CAS  Google Scholar 

  103. Moses, RA, Grodzki, WF Jr: The scleral spur and scleral roll. Invest Ophthal Vis Sci 16:925, 1977.

    PubMed  CAS  Google Scholar 

  104. Moses, RA, Grodzki, WJ Jr, Starcher, BC, Galione, MJ: Elastin content of the scleral spur, trabecular mesh, and sclera. Invest Ophthal Vis Sci 17:817, 1978.

    PubMed  CAS  Google Scholar 

  105. Spencer, WH, Alvarado, J, Hayes, TL: Scanning electron microscopy of human ocular tissues: trabecular meshwork. Invest Ophthal 7:651, 1968.

    PubMed  CAS  Google Scholar 

  106. Raviola, G: Schwalbe line’s cells: a new cell type in the tra becular meshwork of Macaca mulatta. Invest Ophthal Vis Sci 22:45, 1982.

    PubMed  CAS  Google Scholar 

  107. Flocks, M: The anatomy of the trabecular meshwork as seen in tangential section. Arch Ophthal 56:708, 1957.

    Google Scholar 

  108. Fine, BS: Observations on the drainage angle in man and rhesus monkey: a concept of the pathogenesis of chronic simple glaucoma. A light and electron microscopic study. Invest Ophthal 3:609, 1964.

    PubMed  CAS  Google Scholar 

  109. Hoffmann, F, Dumitrescu, L: Schlemm’s canal under the scanning electron microscope. Ophthal Res 2:37, 1971.

    Google Scholar 

  110. Rohen, JW, Rentsch, FJ: Morphology of Schlemm’s canal and related vessels in the human eye. Graefe’s Arch Oph thal 176:309, 1968.

    CAS  Google Scholar 

  111. Ascher, KW: The Aqueous Veins. Biomicroscopic Study of the Aqueous Humor Elimination. Charles C Thomas, Springfield, III, 1961.

    Google Scholar 

  112. Last, RJ: Wolff’s Anatomy of the Eye and Orbit, 5th ed. WB Saunders, Philadelphia, 1961, p. 49.

    Google Scholar 

  113. Rohen, JW, Rentsch, FJ: Electronmicroscopic studies on the structure of the outer wall of Schlemm’s canal, its out flow channels and age changes. Graefe’s Arch Ophthal 177:1, 1969.

    CAS  Google Scholar 

  114. Jocson, VL, Sears, ML: Channels of aqueous outflow and related blood vessels. I. Macaca mulatta (rhesus). Arch Ophthal 80:104, 1968.

    PubMed  CAS  Google Scholar 

  115. Jocson, VL, Sears, ML: Channels of aqueous outflow and related blood vessels. II. Cercopithecus ethiops (Ethiopian green or green vervet). Arch Ophthal 81:244, 1969.

    PubMed  CAS  Google Scholar 

  116. Jocson, VL, Grant, WM: Interconnections of blood vessels and aqueous vessels in human eyes. Arch Ophthal 73:707, 1965.

    PubMed  CAS  Google Scholar 

  117. Gaasterland, DE, Jocson, VL, Sears, ML: Channels of aqueous outflow and related blood vessels. III. Episcleral arteriovenous anatomoses in the rhesus monkey eye (Macaca mulatta). Arch Ophthal 84:770, 1970.

    PubMed  CAS  Google Scholar 

  118. Raviola, G: Conjunctival and episcleral blood vessels are permeable to blood-borne horseradish peroxidase. Invest Ophthal Vis Sci 24:725, 1983.

    PubMed  CAS  Google Scholar 

  119. Ashton, N: The exit pathway of the aqueous. Trans Ophthal Soc UK 80:397, 1960.

    Google Scholar 

  120. Murphy, CG, Yun, A J, Newsome, DA, Alvarado, J A: Loca lization of extracellular proteins of the human trabecular meshwork by indirect immunofluorescence. Am J Ophthal 104:33, 1987.

    PubMed  CAS  Google Scholar 

  121. Gong, H, Trinkaus-Randall, V, Freddo, TF: Ultrastructural immunocytochemical localization of elastin in normal human trabecular meshwork. Curr Eye Res 8:1071, 1989.

    PubMed  CAS  Google Scholar 

  122. Fine, BS: Structure of the trabecular meshwork and the canal of Schlemm. Trans Am Acad Ophthal Otol 70:777, 1966.

    CAS  Google Scholar 

  123. Yi, Y, Li, Y: Histochemical and electron microscopic studies of the trabecular meshwork in normal human eyes. Eye Sci 1:9, 1985.

    CAS  Google Scholar 

  124. Raviola, G, Raviola, E: Paracellular route of aqueous out flow in the trabecular meshwork and canal of Schlemm. A freeze-fracture study of the endothelial junctions in the sclerocorneal angle of the macaque monkey eye. Invest Ophthal Vis Sci 21:52, 1981.

    PubMed  CAS  Google Scholar 

  125. Grierson, I, Rahi, AHS: Microfilaments in the cells of the human trabecular meshwork. Br J Ophthal 63:3, 1979.

    CAS  Google Scholar 

  126. Gipson, IK, Anderson, RA: Actin filaments in cells of human trabecular meshwork and Schlemm’s canal. Invest Ophthal Vis Sci 18:547, 1979.

    PubMed  CAS  Google Scholar 

  127. Ryder, MI, Weinreb, RN, Alvarado, J, Polansky, JR: The cytoskeleton of the cultured human trabecular cell. Characterization and drug response. Invest Ophthal Vis Sci 29:251, 1988.

    PubMed  CAS  Google Scholar 

  128. Weinreb, RN, Ryder, MI, Polansky, JR: The cytoskeleton of the cynomolgus monkey trabecular cell. Invest Ophthal Vis Sci 27:1312, 1986.

    PubMed  CAS  Google Scholar 

  129. Grierson, I, Miller, L, Yong, JD, et al: Investigations of cytoskeletal elements in cultured bovine meshwork cells. Invest Ophthal Vis Sci 27:1318, 1986.

    PubMed  CAS  Google Scholar 

  130. Iwamoto, Y, Tamura, M: Immunocytochemical study of in termediate filaments in cultured human trabecular cells. Invest Ophthal Vis Sci 29:244, 1988.

    PubMed  CAS  Google Scholar 

  131. Knepper, PA, Collins, JA, Weinstein, HG, Breen, M: Aqueous outflow pathway complex carbohydrate synthesis in vitro. Invest Ophthal Vis Sci 24:1546, 1983.

    PubMed  CAS  Google Scholar 

  132. Ohnishi, Y, Taniguchi, Y: Distributions of 35S-sulfate and 3H-glucosamine in the angular region of the hamster: light and electron microscopic autoradiography. Invest Ophthal Vis Sci 24:697, 1983.

    PubMed  CAS  Google Scholar 

  133. Richardson, TM: Distribution of glycosaminoglycans in the aqueous outflow system of the cat. Invest Ophthal Vis Sci 22:319, 1982.

    PubMed  CAS  Google Scholar 

  134. Rohen, JW, Schachtschabel, DO, Berghoff, K: Histoautoradiographic and biochemical studies on human and monkey trabecular meshwork and ciliary body in short-term explant culture. Graefe’s Arch Ophthal 221:199, 1984.

    CAS  Google Scholar 

  135. Schachtschabel, DO, Berghoff, K, Rohen, JW: Synthesis and composition of glycosaminoglycans by explant cultures of human ciliary body and ciliary processes in serum-containing and serum-free defined media. Graefe’s Arch Ophthal 221:207, 1984.

    CAS  Google Scholar 

  136. Polansky, JR, Wood, IS, Maglio, MT, Alvarado, JA: Trabecular meshwork cell culture in glaucoma research: evaluation of biological activity and structural properties of human trabecular cells in vitro. Ophthalmology 91:580, 1984.

    PubMed  CAS  Google Scholar 

  137. Acott, TS, Westcott, M, Passo, MS, Van Buskirk, EM: Trabecular meshwork glycosaminoglycans in human and cynomolgus monkey eye. Invest Ophthal Vis Sci 26:1320, 1985.

    PubMed  CAS  Google Scholar 

  138. Yue, B YJT, Elvart, JL: Biosynthesis of glycosaminoglycans by trabecular meshwork cells in vitro. Curr Eye Res 6:959, 1987.

    PubMed  CAS  Google Scholar 

  139. Berggren, L, Vrabec, F: Demonstration of a coating substance in the trabecular meshwork of the eye and its decrease after perfusion experiments with different kinds of hyaluronidase. Am J Ophthal 44:200, 1957.

    PubMed  CAS  Google Scholar 

  140. Armaly, MF, Wang, Y: Demonstration of acid mucopolysaccharides in the trabecular meshwork of the rhesus monkey. Invest Ophthal 14:507, 1975.

    PubMed  CAS  Google Scholar 

  141. Grierson, I, Lee, WR: Acid mucopolysaccharides in the outflow apparatus. Exp Eye Res 21:417, 1975.

    PubMed  CAS  Google Scholar 

  142. Mizokami, K: Demonstration of masked acidic glycosaminoglycans in the normal human trabecular meshwork. Jap J Ophthal 21:57, 1977.

    CAS  Google Scholar 

  143. Worthen, DM, Cleveland, PH: Fibronectm production by cultured human trabecular meshwork cells. Invest Ophthal Vis Sci 23:797, 1985.

    Google Scholar 

  144. Floyd, BB, Cleveland, PH, Worthen, DM: Fibronectin in human trabecular drainage channels. Invest Ophthal Vis Sci 26:797, 1985.

    PubMed  CAS  Google Scholar 

  145. Hernandez, MR, Weinstein, BI, Schwartz, J, et al: Human trabecular meshwork cells in culture: morphology and extracellular matrix components. Invest Ophthal Vis Sci 28:1655, 1987.

    PubMed  CAS  Google Scholar 

  146. Lynch, MO, Peeler, JS, Brown, RH, Niederkorn, JY: Expression of HLA class I and II antigens on cells of the human trabecular meshwork. Ophthalmology 94:851, 1987.

    PubMed  CAS  Google Scholar 

  147. Latina, M, Flotte, T, Crean, E, et al: Immunohistochemical staining of the human anterior segment. 106:95, 1988.

    CAS  Google Scholar 

  148. Stone, RA, Kuwayama, Y, Laties, AM, Marangos, PJ: Neuron-specific enolase-containing cells in the rhesus monkey trabecular meshwork. Invest Ophthal Vis Sci 25:1332, 1984.

    PubMed  CAS  Google Scholar 

  149. Grierson, I, Chisholm, I A: Clearance of debris from the iris through the drainage angle of the rabbit’s eye. Br J Ophthal 62:694, 1978.

    CAS  Google Scholar 

  150. Grierson, I, Day, J, Unger, WG, Ahmed, A: Phagocytosis of latex microspheres by bovine meshwork cells in culture. Graefe’s Arch Ophthal 224:536, 1986.

    CAS  Google Scholar 

  151. Barak, MH, Weinreb, RN, Ryder, MI: Quantitative assessment of cynomolgus monkey trabecular cell phagocytosis and absorption. Curr Eye Res 7:445, 1988.

    PubMed  CAS  Google Scholar 

  152. Shirato, S, Murphy, CG, Bloom, E, et al: Kinetics of phagocytosis in trabecular meshwork cells. Flow cytometry and morphometry. Invest Ophthal Vis Sci 30:2499, 1989.

    PubMed  CAS  Google Scholar 

  153. Johnson, DH, Richardson, TM, Epstein, DL: Trabecular meshwork recovery after phagocytic challenge. Curr Eye Res 8:1121, 1989.

    PubMed  CAS  Google Scholar 

  154. Grierson, I, Lee, WR: Erythrocyte phagocytosis in the human trabecular meshwork. Br J Ophthal 57:400, 1973.

    CAS  Google Scholar 

  155. Johnson, DH: Does pigmentation affect the trabecular meshwork? Arch Ophthal 107:250, 1989.

    PubMed  CAS  Google Scholar 

  156. Speakman, JS: Drainage channels in the trabecular wall of Schlemm’s canal. Br J Ophthal 44:513, 1960.

    CAS  Google Scholar 

  157. Feeney, L, Wissig, S: Outflow studies using an electron dense tracer. Trans Am Acad Ophthal Otol 70:791, 1966.

    CAS  Google Scholar 

  158. Diaz, G, Orzalesi, N, Fossarello, M, et al: Coated pits and coated vesicles in the endothelial cells of trabecular mesh work. Exp Eye Res 35:99, 1982.

    PubMed  CAS  Google Scholar 

  159. Diaz, G, Carta, S, Orzalesi, N: Nonrandom distribution of coated pits and vesicles in the connective tissue cells of the trabecular meshwork of rabbit. Graefe’s Arch Ophthal 224:147, 1986.

    CAS  Google Scholar 

  160. Anderson, DR: Scanning electron microscopy of primate trabecular meshwork. Am J Ophthal 71:90, 1971.

    PubMed  CAS  Google Scholar 

  161. Johnstone, MA: Pressure-dependent changes in configuration of the endothelial tubules of Schlemm’s canal. Am J Ophthal 78:630, 1974.

    PubMed  CAS  Google Scholar 

  162. Svedbergh, B: Protrusions of the inner wall of Schlemm’s canal. Am J Ophthal 82:875, 1976.

    PubMed  CAS  Google Scholar 

  163. Johnstone, MA: Pressure-dependent changes in nuclei and the process origins of the endothelial cells lining Schlemm’s canal. Invest Ophthal Vis Sci 18:44, 1979.

    PubMed  CAS  Google Scholar 

  164. Segawa, K: Electron microscopic observations on the replicas of Schlemm’s canal. Acta Soc Ophthal Jap 73:2013, 1969.

    PubMed  CAS  Google Scholar 

  165. Segawa, K: Scanning electron microscopic studies on the iridocorneal angle tissue in normal human eyes. Acta Soc Ophthal Jap 76:659, 1972.

    PubMed  CAS  Google Scholar 

  166. Holmberg, A: The fine structure of the inner wall of Schlemm’s canal. Arch Ophthal 62:956, 1959.

    Google Scholar 

  167. Holmberg, A: Schlemm’s canal and the trabecular mesh work. An electron microscopic study of the normal structure in man and monkey (Cercopithecus ethiops). Doc Ophthal 19:339, 1965.

    Google Scholar 

  168. Inomata, H, Bill, A, Smelse, GK: Aqueous humor path ways through the trabecular meshwork and into Schlemm’s canal in the cynomolgus monkey (Macaca irus). Am J Ophthal 73:760, 1972.

    PubMed  CAS  Google Scholar 

  169. Segawa, K: Pores of the trabecular wall of Schlemm’s canal. Ferritin perfusion in enucleated human eyes. Acta Soc Ophthal Jap 74:1240, 1970.

    PubMed  CAS  Google Scholar 

  170. Segawa, K: Pore structures of the endothelial cells of the aqueous outflow pathway: scanning electron microscopy. Jap J Ophthal 17:133, 1973.

    Google Scholar 

  171. Shabo, AL, Reese, TS, Gaasterland, D: Postmortem for mation of giant endothelial vacuoles in Schlemm’s canal of the monkey. Am J Ophthal 76:896, 1973.

    PubMed  CAS  Google Scholar 

  172. Tripathi, RC: Ultrastructure of the trabecular wall of Schlemm’s canal in relation to aqueous outflow. Exp Eye Res 7:335, 1968.

    PubMed  CAS  Google Scholar 

  173. Tripathi, RC: Mechanism of the aqueous outflow across the trabecular wall of Schlemm’s canal. Exp Eye Res 11:116, 1971.

    PubMed  CAS  Google Scholar 

  174. Tripathi, RC: Ultrastructure of the exit pathway of the aqueous in lower mammals (a preliminary report on the (“angular aqueous plexus”). Exp Eye Res 12:311, 1971.

    PubMed  CAS  Google Scholar 

  175. Tripathi, RC: Aqueous outflow pathway in normal and glaucomatous eyes. Br J Ophthal 56:157, 1972.

    CAS  Google Scholar 

  176. Sondermann, R: Beitrag zur entwicklung und morphologie des Schlemmschen kanals. Graefe’s Arch Ophthal 124:521, 1930.

    Google Scholar 

  177. Ashton, N, Brini, A, Smith, R: Anatomical studies of the trabecular meshwork of the normal human eye. Br J Ophthal 40:257, 1956.

    CAS  Google Scholar 

  178. Iwamoto, T: Further observation on Sondermann’s channels of the human trabecular meshwork. Graefe’s Arch Ophthal 172:213, 1967.

    CAS  Google Scholar 

  179. Lutjen-Drecoll, E, Rohen, JW: Uber die endotheliale auskleidung des Schlemmschen kanals im silberimpragnationsbild. Graefe’s Arch Ophthal 180:249, 1970.

    CAS  Google Scholar 

  180. de Kater, AW, Spurr-Michaud, SJ, Gipson, IK: Localization of smooth muscle myosin-containing cells in the aqueous outflow pathway. Invest Ophthal Vis Sci 31:347, 1990.

    PubMed  Google Scholar 

  181. McMenamin, PG, Lee, WR, Aitken, DAN: Age-related changes in the human outflow apparatus. Ophthalmology 93:194, 1986.

    PubMed  CAS  Google Scholar 

  182. Miyazaki, M, Segawa, K, Urakawa, Y: Age-related changes in the trabecular meshwork of the normal human eye. Jap J Ophthal 31:558, 1987.

    CAS  Google Scholar 

  183. Alvarado, J, Murphy, C, Polansky, J, Juster, R: Age-related changes in trabecular meshwork cellularity. Invest Ophthal Vis Sci 21:714, 1987.

    Google Scholar 

  184. Ainsworth, JR, Lee, WR: Effects of age and rapid highpressure fixation on the morphology of Schlemm’s canal. Invest Ophthal Vis Sci 31:745, 1990.

    PubMed  CAS  Google Scholar 

  185. Emi, K, Pederson, JE, Toris, CB: Hydrostatic pressure of the suprachoroidal space. Invest Ophthal Vis Sci 30:233, 1989.

    PubMed  CAS  Google Scholar 

  186. Raviola, G, Butler, JM: Unidirectional transport mechanism of horseradish peroxidase in the vessels of the iris. Invest Ophthal Vis Sci 25:827, 1984.

    PubMed  CAS  Google Scholar 

  187. Butler, JM, Raviola, G, Beers GJ, Carter AP: Computed to mography of aqueous humor outflow pathways. Exp Eye Res 39:709, 1984.

    PubMed  CAS  Google Scholar 

  188. Grant, WM: Further studies on facility of flow through the trabecular meshwork. Arch Ophthal 60:523, 1958.

    CAS  Google Scholar 

  189. Grant, WM: Experimental aqueous perfusion in enucleateed human eyes. Arch Ophthal 69:783, 1963.

    PubMed  CAS  Google Scholar 

  190. Tripathi, RC, Tripathi, BJ: The mechanism of aqueous outflow in lower mammals. Exp Eye Res 14:73, 1972.

    Google Scholar 

  191. Tarkkanen, A, Niemi, M: Enzyme histochemistry of the angle of the anterior chamber of the human eye. Acta Ophthal 45:93, 1987.

    Google Scholar 

  192. Vegge, T: Ultrastructure of normal human trabecular endothelium. Acta Ophthal 41:193, 1963.

    PubMed  CAS  Google Scholar 

  193. Johnstone, MA, Grant, WM: Pressure-dependent changes in structure of the aqueous outflow system of human and monkey eyes. Am J Ophthal 75:365, 1973.

    PubMed  CAS  Google Scholar 

  194. Grierson, I, Lee, WR: Changes in the monkey outflow apparatus at graded levels of intraocular pressure: a qualitative analysis by light microscopy and scanning electron microscopy. Exp Eye Res 19:21, 1974.

    PubMed  CAS  Google Scholar 

  195. Grierson, I, Lee, WR: Pressure-induced changes in the ultrastructure of the endothelium lining Schlemm’s canal. Am J Ophthal 80:863, 1975.

    PubMed  CAS  Google Scholar 

  196. Kayes, J: Pressure gradient changes on the trabecular meshwork of monkeys. Am J Ophthal 79:549, 1975.

    PubMed  CAS  Google Scholar 

  197. Van Buskirk, EM, Grant, WM: Influence of temperature and the question of involvement of cellular metabolism in aqueous outflow. Am J Ophthal 77:565, 1974.

    Google Scholar 

  198. Bill, A, Svedbergh, B: Scanning electron microscopic studies of the trabecular meshwork and the canal of Schlemm – an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthal 50:295, 1972.

    PubMed  CAS  Google Scholar 

  199. Moseley, H, Grierson, J, Lee, W: Mathematical modeling of aqueous humor outflow from the eye through the pores in the lining endothelium of Schlemm’s canal. Clin Phys PhysiolMeas 4:47, 1983.

    PubMed  CAS  Google Scholar 

  200. Seiler, T, Wollensak, J: The resistance of the trabecular meshwork to aqueous humor outflow. Graefe’s Arch Ophthal 223:88, 1985.

    CAS  Google Scholar 

  201. Ethier, CR, Kamm, RD, Palaszewski, BA, et al: Calculations of flow resistance in the juxtacanalicular meshwork. Invest Ophthalmol Vis Sci 27:1741, 1986.

    PubMed  CAS  Google Scholar 

  202. Johnson, M, Ethier, CR, Kamm, RD, et al: The flow of aqueous humor through micro-porous filters. Invest Ophthal Vis Sci 27:92, 1986.

    PubMed  CAS  Google Scholar 

  203. Francois, J: The importance of the mucopolysaccharides in intraocular pressure regulation. Invest Ophthal 14:173, 1975.

    PubMed  CAS  Google Scholar 

  204. Hayasaka, S, Sears, ML: Distribution of acid phosphatase, beta-glucuronidase, and lysosomal hyaluronidase in the an terior segment of the rabbit eye. Invest Ophthal Vis Sci 17:982, 1978.

    PubMed  CAS  Google Scholar 

  205. Grierson, I, Lee, WR, Abraham, S: A light microscopic study of the effects of testicular hyaluronidase on the outflow system of a baboon (Papio cynocephalus). Invest Ophthal Vis Sci 18:356, 1979.

    PubMed  CAS  Google Scholar 

  206. Knepper, PA, Farbman, Al, Telser, AG: Exogenous hyaluronidase and degradation of hyaluronic acid in the rabbit eye. Invest Ophthal Vis Sci 25:286, 1984.

    PubMed  CAS  Google Scholar 

  207. Van Buskirk, EM, Brett, J: The canine eye: in vitro dissolution of the barriers to aqueous outflow. Invest Ophthal Vis Sci 17:258, 1978.

    PubMed  Google Scholar 

  208. Van Buskirk, EM, Brett, J: The canine eye: in vitro studies of the intraocular pressure and facility of aqueous outflow. Invest Ophthal Vis Sci 17:373, 1978.

    PubMed  Google Scholar 

  209. Kaufman, PL, Erickson, KA, Bárány, EH: Effect of repeated anterior chamber perfusion on intraocular pressure and total outflow facility in the cynomolgus monkey. Invest Ophthal Vis Sci 24:159, 1983.

    PubMed  CAS  Google Scholar 

  210. Morrison, JC, Van Buskirk, EM: The canine eye: pectinate ligaments and aqueous outflow resistance. Invest Ophthal Vis Sci 23:726, 1982.

    PubMed  CAS  Google Scholar 

  211. Peterson, WS, Jocson, VL: Hyaluronidase effects of aqueous outflow resistance. Quantitative and localizing studies in the rhesus monkey eye. Am J Ophthal 77:573, 1974.

    PubMed  CAS  Google Scholar 

  212. Hernandez, MR, Wenk, EJ, Weinstein, BI, et al: Glucocorticoid target cells in human outflow pathway: autopsy and surgical specimens. Invest Ophthal Vis Sci 24:1612, 1983.

    PubMed  CAS  Google Scholar 

  213. Weinreb, RN, Bloom, E, Baxter, JD, et al: Detection of glucocorticoid receptors in cultured human trabecular cells. Invest Ophthal Vis Sci 21:403, 1981.

    PubMed  CAS  Google Scholar 

  214. Hernandez, MR, Weinstein, BI, Wenk, EJ, et al: The effect of dexamethasone on the in vitro incorporation of precursors of extracellular matrix components in the outflow pathway region of the rabbit eye. Invest Ophthal Vis Sci 24:704, 1983.

    PubMed  CAS  Google Scholar 

  215. Weinreb, RN, Mitchell, MD, Polansky, JR: Prostaglandin production by human trabecular cells: in vitro inhibition by dexamethasone. Invest Ophthal Vis Sci 24:1541, 1983.

    PubMed  CAS  Google Scholar 

  216. Weinreb, RN, Polansky, JR, Alvarado, JA, Mitchell, MD: Arachidonic acid metabolism in human trabecular mesh work. Invest Ophthal Vis Sci 29:1708, 1988.

    PubMed  CAS  Google Scholar 

  217. Bito, LZ, Draga, A, Blanco, J, Camras, CB: Long-term maintenance of reduced intraocular pressure by daily or twice daily topical application of prostaglandins to cat or rhesus monkey eyes. Invest Ophthal Vis Sci 24:312, 1983.

    PubMed  CAS  Google Scholar 

  218. Kaufman, PL, Barany, EH: Cytochalasin B reversibly in creases outflow facility in the eye of the cynomolgus monkey. Invest Ophthal Vis Sci 16:47, 1977.

    PubMed  CAS  Google Scholar 

  219. Svedbergh, B, Lutjen-Drecoll, E, Ober, M, Kaufman, PL: Cytochalasin B-induced structural changes in the anterior ocular segment of the cynomologus monkey. Invest Ophthal Vis Sci 17:718, 1978.

    PubMed  CAS  Google Scholar 

  220. Johnstone, M, Tanner, D, Chau, B, Kopecky, K: Concentration-dependent morphologic effects of cytochalasin B in the aqueous outflow system. Invest Ophthal Vis Sci 19:835, 1980.

    PubMed  CAS  Google Scholar 

  221. Kaufman, PL, Erickson, KA: Cytochalasin B and D dose outflow facility response relationships in the cynomolgus monkey. Invest Ophthal Vis Sci 23:646, 1982.

    PubMed  CAS  Google Scholar 

  222. Kaufman, PL, Svedbergh, B, Lutjen-Drecoll, E: Medical trabeculocanalotomy in monkeys with cytochalasin B or EDTA. Ann Ophthal 11:795, 1979.

    Google Scholar 

  223. Bill, A, Lutjen-Drecoll, E, Svedbergh, B: Effects of intracameral Na2EDTA and EGTA on aqueous outflow routes in the monkey eye. Invest Ophthal Vis Sci 19:492, 1980.

    PubMed  CAS  Google Scholar 

  224. Barany, EH: In vitro studies of the resistance to flow through the angle of the anterior chamber. Acta Soc Med Uppsal 59:260, 1954.

    CAS  Google Scholar 

  225. Epstein, DL, Hashimoto, JM, Anderson, PJ, Grant, WM: Effect of iodoacetamide perfusion on outflow facility and metabolism of the trabecular meshwork. Invest Ophthal Vis Sci 20:625, 1981.

    PubMed  CAS  Google Scholar 

  226. Epstein, DL, Patterson, MM, Rivers, SC, Anderson, PJ: Nethylmaleimide increases the facility of aqueous outflow of excised monkey and calf eyes. Invest Ophthal Vis Sci 22:752, 1982.

    PubMed  CAS  Google Scholar 

  227. Lindenmayer, JM, Kahn, MG, Hertzmark, E, Epstein, DL: Morphology and function of the aqueous outflow system in monkey eyes perfused with sulfhydryl reagents. Invest Ophthal Vis Sci 24:710, 1983

    PubMed  CAS  Google Scholar 

  228. Freddo, TF, Patterson, MM, Scott, DR, Epstein, DL: Influence of mercurial sulfhydryl agents on aqueous outflow pathways in enucleated eyes. Invest Ophthal Vis Sci 25:278, 1984.

    PubMed  CAS  Google Scholar 

  229. Kahn, MG, Giblin, FJ, Epstein, DL: Glutathione in calf trabecular meshwork and its relation to aqueous humor outflow facility. Invest Ophthal Vis Sci 24:1283, 1983.

    PubMed  CAS  Google Scholar 

  230. Scott, DR, Karageuzian, LN, Anderson, PJ, Epstein, DL: Glutathione peroxidase of calf trabecular meshwork. Invest Ophthal Vis Sci 25:599, 1984.

    PubMed  CAS  Google Scholar 

  231. Nguyen, KPV, Chung, ML, Anderson, PJ, et al: Hydrogen peroxide removal by the calf aqueous outflow pathway. Invest Ophthal Vis Sci 29:976, 1988.

    PubMed  CAS  Google Scholar 

  232. Pandolfi, M, Kwaan, HC: Fibrinolysis in the anterior segment of the eye. Arch Ophthal 77:99, 1967.

    PubMed  CAS  Google Scholar 

  233. Pandolfi, M: Coagulation Factor VIII localization in the aqueous outflow pathways. Arch Ophthal 94:656, 1976.

    PubMed  CAS  Google Scholar 

  234. Tripathi, BJ, Geanon, JD, Tripathi, RC: Distribution of tissue plasminogen activator in human and monkey eyes. Ophthalmology 94:1434, 1987.

    PubMed  CAS  Google Scholar 

  235. Park, JK, Tripathi, RC, Tripathi, BJ, Barlow, GH: Tissue plasminogen activator in the trabecular endothelium. Invest Ophthal Vis Sci 28:1341, 1987.

    PubMed  CAS  Google Scholar 

  236. Shuman, MA, Polansky, JR, Merkel, C, Alvarado, JA: Tissue plasminogen activator in cultured human trabecular meshwork cells. Predominance of enzyme over plasminogen activator inhibitor. Invest Ophthal Vis Sci 29:401, 1988.

    PubMed  CAS  Google Scholar 

  237. Van Buskirk, EM, Grant, WM: Lens depression and aqueous outflow in enucleated primate eyes. Am J Ophthal 76:632, 1973.

    PubMed  Google Scholar 

  238. Van Buskirk, EM: Trabeculotomy in the immature, enucleated human eye. Invest Ophthal Vis Sci 16:63, 1977.

    PubMed  Google Scholar 

  239. Moses, RA, Hoover, GS, Oostwouder, PH: Blood reflux in Schlemm’s canal. I. Normal findings. Arch Ophthal 97:1307, 1979.

    PubMed  CAS  Google Scholar 

  240. Ellingsen, BA, Grant, WM: The relationship of pressure and aqueous outflow in enucleated human eyes. Invest Ophthal 10:430, 1971.

    PubMed  CAS  Google Scholar 

  241. Ellingsen, BA, Grant, WM: Influence of intraocular pressure and trabeculotomy on aqueous outflow in enucleated monkey eyes. Invest Ophthal 10:705, 1971.

    PubMed  CAS  Google Scholar 

  242. Brubaker, RF: The effect of intraocular pressure on conventional outflow resistance in the enucleated human eye. Invest Ophthal 14:286, 1975.

    PubMed  CAS  Google Scholar 

  243. Grierson, I, Lee, WR: The fine structure of the trabecular meshwork at graded levels of intraocular pressure. (1) Pressure effects within the near-physiological range (8–30 mm Hg). Exp Eye Res 20:505, 1975.

    PubMed  CAS  Google Scholar 

  244. Grierson, I, Lee, WR: The fine structure of the trabecular meshwork at graded levels of intraocular pressure. (2) Pressure outside the physiological range (0 and 50 mm Hg). Exp Eye Res 20:523, 1975.

    PubMed  CAS  Google Scholar 

  245. Ellingsen, B A, Grant, WM: Trabeculotomy and sinusotomy in enucleated human eyes. Invest Ophthal 11:21, 1972.

    PubMed  CAS  Google Scholar 

  246. Moses, RA: The conventional outflow resistances. Am J Ophthal 92:804, 1981.

    PubMed  CAS  Google Scholar 

  247. Hashimoto, JM, Epstein, DL: Influence of intraocular pressure on aqueous outflow facility in enucleated eyes of different mammals. Invest Ophthal Vis Sci 19:1483, 1980.

    PubMed  CAS  Google Scholar 

  248. Moses, RA, Arnzen, RJ: The trabecular mesh: a mathematical analysis. Invest Ophthal Vis Sci 19:1490, 1980.

    PubMed  CAS  Google Scholar 

  249. Van Buskirk, EM: Changes in the facility of aqueous outflow induced by lens depression and intraocular pressure in excised human eyes. Am J Ophthal 82:736, 1976.

    PubMed  Google Scholar 

  250. Moses, RA, Etheridge, EL, Grodzki, WJ Jr: The effect of lens depression on the components of outflow resistance. Invest Ophthal Vis Sci 22:37, 1982.

    PubMed  CAS  Google Scholar 

  251. Van Buskirk, EM: Anatomic correlates of changing aqueous outflow facility in excised human eyes. Invest Ophthal Vis Sci 22:625, 1982.

    PubMed  Google Scholar 

  252. Rosenquist, RC Jr, Melamed, S, Epstein, DL: Anterior and posterior axial lens displacement and human aqueous outflow facility. Invest Ophthal Vis Sci 29:1159, 1988.

    PubMed  Google Scholar 

  253. Moses, RA, Grodzki, WJ Jr: Choroid tension and facility of aqueous outflow. Invest Ophthal Vis Sci 16:1062, 1977.

    PubMed  CAS  Google Scholar 

  254. Rosenquist, R, Epstein, D, Melamed, S, et al: Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res 8:1233, 1989.

    PubMed  CAS  Google Scholar 

  255. Peterson, WS, Jocson, VL, Sears, ML: Resistance to aqueous outflow in the rhesus monkey eye. Am J Ophthal 72:445, 1971.

    PubMed  CAS  Google Scholar 

  256. Kollarits, CR, Gaasterland, D, Di Chiro, G, et al: Manage ment of a patient with orbital varices, visual loss, and ipsilateral glaucoma. Ophthal Surg 8:54, 1977.

    CAS  Google Scholar 

  257. Brubaker, RF: Determination of episcleral venous pressure in the eye. A comparison of three methods. Arch Ophthal 77:110, 1967.

    PubMed  CAS  Google Scholar 

  258. Podos, SM, Minas, TF, Macri, FJ: A new instrument to measure episcleral venous pressure. Comparison of normal eyes and eyes with primary open-angle glaucoma. Arch Ophthal 80:209, 1968.

    PubMed  CAS  Google Scholar 

  259. Krakau, CET, Widakowich, J, Wilke, K: Measurements of the episcleral venous pressure by means of an air jet. Acta Ophtha l51:185, 1973.

    Google Scholar 

  260. Phelps, CD, Armaly, MF: Measurement of episcleral venous pressure. Am J Ophthal 85:35, 1978.

    PubMed  CAS  Google Scholar 

  261. Zeimer, RC, Gieser, DK, Wilensky, JT, et al: A practical venomanometer. Measurement of episcleral venous pressure and assessment of the normal range. Arch Ophthal 101:1447, 1983.

    PubMed  CAS  Google Scholar 

  262. Gaasterland, DE, Pederson, JE: Episcleral venous pressure: a comparison of invasive and noninvasive measure ments. Invest Ophthal Vis Sci 24:1417, 1983.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shields, M.B., Krieglstein, G.K. (1993). Kammerwasserdynamik I: Anatomie und Physiologie. In: Glaukom. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77053-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77053-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77054-8

  • Online ISBN: 978-3-642-77053-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics