Glaukom pp 5-33 | Cite as

Kammerwasserdynamik I: Anatomie und Physiologie

  • M. Bruce Shields
  • Günter Karl Krieglstein


Die Beschäftigung mit Glaukom konzentriert sich überwiegend auf die Konsequenzen des erhöhten Augeninnendruckes (IOD). Es ist deshalb nur zu logisch, das Studium der Glaukomerkrankungen damit zu beginnen, welche physiologischen Parameter das Augeninnendruckniveau kontrollieren, was gleichbedeutend ist mit den dynamischen Regelgrößen der Kammerwasserdynamik.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hogan, MF, Alvarado, JA, Weddell, JE: Histology of the Human Eye. Philadelphia, WB Saunders, 1971, p. 269.Google Scholar
  2. 2.
    Morrison, JC, Van Buskirk, EM: Anterior collateral circulation in the primate eye. Ophthalmology 90:707,1983.PubMedGoogle Scholar
  3. 3.
    Woodlief, NF: Initial observations on the ocular microcirculation in man. I. The anterior segment and extraocular muscles. Arch Ophthal 98:1268,1980.PubMedGoogle Scholar
  4. 4.
    Morrison, JC, DeFrank, MP, Van Buskirk, EM: Regional microvascular anatomy of the rabbit ciliary body. Invest Ophthal Vis Sci 28:1314,1987.PubMedGoogle Scholar
  5. 5.
    Morrison, JC, DeFrank, MP, Van Buskirk, EM: Comparative microvascular anatomy of mammalian ciliary processes. Invest Ophthal Vis Sci 28:1325,1987.PubMedGoogle Scholar
  6. 6.
    Talusan, ED, Schwartz, B: Fluorescein angiography. Demonstration of flow patterns of anterior ciliary arteries. Arch Ophthal 99:1074,1981.PubMedGoogle Scholar
  7. 7.
    Sakimoto, G, Schwartz, B: Decrease of anterior ciliary arterial pressure with increased ocular pressure. Invest Ophthal Vis Sci 25:992,1984.PubMedGoogle Scholar
  8. 8.
    Nanba, K, Schwartz, B: Increased diameter of the anterior ciliary artery with increased intraocular pressure. Arch Ophthal 104:1652,1986.PubMedGoogle Scholar
  9. 9.
    Morrison, JC, Van Buskirk, EM: Ciliary process microvasculature of the primate eye. Am J Ophthal 97:372,1984.PubMedGoogle Scholar
  10. 10.
    Smelser, GK: Electron microscopy of a typical epithelial cell and of the normal human ciliary process. Trans Am Acad Ophthal Otol 70:738,1966.Google Scholar
  11. 11.
    Streeten, BW, Licari, PA: The zonules and the elastic microfibrillar system in the ciliary body. Invest Ophthal Vis Sci 24:667,1983.PubMedGoogle Scholar
  12. 12.
    Tormey, JMcD: The ciliary epithelium: an attempt to correlate structure and function. Trans Am Acad Ophthal Otol 70:755,1966.Google Scholar
  13. 13.
    Holmberg, A: Ultrastructure of the ciliary epithelium. Arch Ophthal 62:935,1959.PubMedGoogle Scholar
  14. 14.
    Holmberg, A: Differences in ultrastructure of normal human and rabbit ciliary epithelium. Arch Ophthal 62:952, 1959.PubMedGoogle Scholar
  15. 15.
    Raviola, G, Raviola, E: Intercellular junctions in the ciliary epithelium. Invest Ophthal Vis Sci 17:958, 1978.PubMedGoogle Scholar
  16. 16.
    Smith, RL, Raviola, G: The structural basis of the bloodaqueous barrier in the chicken eye. Invest Ophthal Vis Sci 24:326, 1983.PubMedGoogle Scholar
  17. 17.
    Green, K: Physiology and pharmacology of aqueous humor inflow. Surv Ophthal 29:208, 1984.Google Scholar
  18. 18.
    Green, K, Bountra, C, Georgiou, P, House, CR: An electrophysiologic study of rabbit ciliary epithelium. Invest Ophthal Vis Sci 26:371, 1985.PubMedGoogle Scholar
  19. 19.
    Cunha-Vas, JG: The blood-ocular barriers. Invest Ophthal Vis Sci 17:1037, 1978.Google Scholar
  20. 20.
    Pederson, JE: Fluid permeability of monkey ciliary epithelium in vivo. Invest Ophthal Vis Sci 23:176, 1982.PubMedGoogle Scholar
  21. 21.
    Wulle, KG: Zelldifferenzierungen im Ciliarepithel während der menschlichen Fetalentwicklung und ihre Be-ziehungen zur Kammerwasserbildung. Graefe’s Arch Ophthal 172:170, 1967.Google Scholar
  22. 22.
    Richardson, KT: Cellular response to drugs affecting aqueous dynamics. Arch Ophthal 89:65, 1973.PubMedGoogle Scholar
  23. 23.
    Uusitalo, R, Palkama, A, Stjernschantz, J: An electron microscopical study of the bloodqueous barrier in the ciliary body and iris of the rabbit. Exp Eye Res 17:49, 1973.PubMedGoogle Scholar
  24. 24.
    Smith, RS, Rudt, LA: Ultrastructural studies of the bloodaqueous barrier. 2. The barrier to horseradish peroxidase in primates. Am J Ophthal 76:937, 1973.PubMedGoogle Scholar
  25. 25.
    Peress, NS, Tompkins, DC: Pericapillary permeability of the ciliary processes. Role of molecular charge. Invest Ophthal Vis Sci 23:168, 1982.PubMedGoogle Scholar
  26. 26.
    Macri, JF, Cevario, SJ: The formation and inhibition of aqueous humor production. Arch Ophthal 96:1664, 1978.PubMedGoogle Scholar
  27. 27.
    Farahbakhsh, NA, Fian, GL: Volume regulation of nonpigmented cells from ciliary epithelium. Invest Ophthal Vis Sci 28:934, 1987.PubMedGoogle Scholar
  28. 28.
    Becker, B: The effect of hypothermia on aqueous humor dynamics. III. Turnover of ascorbate and sodium. Am J Ophthal 51:1032, 1961.PubMedGoogle Scholar
  29. 29.
    Berggren, L: Effect of composition of medium and of metabolic inhibitors on secretion in vitro by the ciliary processes of the rabbit eye. Invest Ophthal 4:83, 1965.PubMedGoogle Scholar
  30. 30.
    Sears, ML: The aqueous. In: Adler’s Physiology of the Eye, 6th ed., Moses, RA, ed. CV Mosby, St. Louis, 1975, p. 232.Google Scholar
  31. 31.
    Bonting, SL, Becker, B: Studies on sodium-potassium activated adenosinetriphosphatase. XIV. Inhibition of enzyme activity and aqueous humor flow in the rabbit eye after intravitreal injection of ouabain. Invest Ophthal 3:523, 1964.PubMedGoogle Scholar
  32. 32.
    Cole, DF: Some effects of decreased plasma sodium concentration on the composition and tension of the aqueous humor. Br J Ophthal 43:268, 1959.Google Scholar
  33. 33.
    Holland, MG, Gipson, CC: Chloride ion transport in the isolated ciliary body. Invest Ophthal 9:20, 1970.PubMedGoogle Scholar
  34. 34.
    Holland, MG: Chloride ion transport in the isolated ciliary body. II. Ion substitution experiments. Invest Ophthal 9:30, 1970.PubMedGoogle Scholar
  35. 35.
    Bito, L, Davson, H: Steady-state concentrations of potassium in the ocular fluids. Exp Eye Res 3:283, 1964.PubMedGoogle Scholar
  36. 36.
    Helbig, H, Korbmacher, C, Wohlfarth, J, et al: Electrical membrane properties of a cell clone derived from human nonpigmented ciliary epithelium. Invest Ophthal Vis Sci 30:882, 1989.PubMedGoogle Scholar
  37. 37.
    Chu, T-C, Candia, O A: Electrically silent Na+ and Cl fluxes across the rabbit ciliary epithelium. Invest Ophthal Vis Sci 29:594, 1988.PubMedGoogle Scholar
  38. 38.
    Chu, T-C, Candia, O A: Active transport of ascorbate across the isolated rabbit ciliary epithelium. Invest Ophthal Vis Sci 29:594, 1988.PubMedGoogle Scholar
  39. 39.
    Reddy, VN: Dynamics of transport systems in the eye. Invest Ophthal Vis Sci 18:1000, 1979.PubMedGoogle Scholar
  40. 40.
    Maren, TH: The rates of movement of Na+, Cl, and HCO3 from plasma to posterior chamber: effect of acetazolamide and relation to the treatment of glaucoma. Invest Ophthal 15:356, 1976.PubMedGoogle Scholar
  41. 41.
    Cole, DF: Effects of some metabolic inhibitors upon the formation of the aqueous humor in rabbits. Br J Ophthal 44:739, 1960.Google Scholar
  42. 42.
    Hara, K, Lutjen-Drecoll, E, Prestele, H, Rohen, JW: Structural differences between regions of the ciliary body in primates. Invest Ophthal Vis Sci 16:912, 1977.PubMedGoogle Scholar
  43. 43.
    Ober, M, Rohen, JW: Regional differences in the fine structure of the ciliary epithelium related to accommodation. Invest Ophthal Vis Sci 18:655, 1979.PubMedGoogle Scholar
  44. 44.
    Mizuno, K, Asaoka, M: Cycloscopy and fluorescein cycloscopy. Invest Ophthal 15:561, 1976.PubMedGoogle Scholar
  45. 45.
    Lutjen-Drecoll, E, Lonnerholm, G, Eichhorn, M: Carbonic anhydrase distribution in the human and monkey eye by light and electron microscopy. Graefe’s Arch Ophthal 220:285, 1983.Google Scholar
  46. 46.
    Russman, W: Levels of glycolytic enzyme activity in the ciliary epithelium prepared from bovine eyes. Ophthal Res 2:205, 1971.Google Scholar
  47. 47.
    Feeney, L, Mixon, R: Localization of 35sulfated macromolecules at the site of active transport in the ciliary processes. Invest Ophthal 13:882, 1974.PubMedGoogle Scholar
  48. 48.
    Feeney, L, Mixon, RN: Sulf ate and galactose metabolism in differentiating ciliary body and iris epithelia: autoradiographic and ultrastructural studies. Invest Ophthal 14:364, 1975.PubMedGoogle Scholar
  49. 49.
    Krupin, T, Wax, M, Moolchandani, J: Aqueous production. Trans Ophthal Soc UK 105:156, 1986.PubMedGoogle Scholar
  50. 50.
    Raviola, G: Evidence for a secretory process, distinct from that of the aqueous humor, in the ciliary epithelium of Macaca mulatta. Trans Ophthal Soc UK 105:140, 1986.PubMedGoogle Scholar
  51. 51.
    Brubaker, RF: The flow of aqueous humor in the human eye. Trans Am Ophthal Soc 80:391, 1982.PubMedGoogle Scholar
  52. 52.
    Brubaker, RF, Kupfer, C: Determination of pseudofacility in the eye of the rhesus monkey. Arch Ophthal 75:693, 1966.PubMedGoogle Scholar
  53. 53.
    Kupfer, C, Sanderson, P: Determination of pseudofacility in the eye of man. Arch Ophthal 80:194, 1968.PubMedGoogle Scholar
  54. 54.
    Bill, A: Aspects of suppressability of aqueous humour formation. Doc Ophthal 26:73, 1969.Google Scholar
  55. 55.
    Brubaker, RF: The measurement of pseudofacility and true facility by constant pressure perfusion in the normal rhesus monkey eye. Invest Ophthal 9:42, 1970.PubMedGoogle Scholar
  56. 56.
    Leydhecker, W, Rehak, S, Mathyl, J: Investigations on homeostasis: the effect of experimental changes of pressure on the production of aqueous humour in the living rabbit eye. Klin Monatsbl Augenheilkd 159:427, 1971.PubMedGoogle Scholar
  57. 57.
    Kupfer, C, Ross, K: Studies of aqueous humor dynamics in man. 1. Measurements in young normal subjects. Invest Ophthal 10:518, 1971.PubMedGoogle Scholar
  58. 58.
    Bill, A: Effects of longstanding stepwise increments in eye pressure on the rate of aqueous humor formation in a primate (Cercopithecus ethiops). Exp Eye Res 12:184, 1971.PubMedGoogle Scholar
  59. 59.
    Carlson, KH, McLaren, JW, Topper, JE, Brubaker, RF: Effeet of body positions on intraocular pressure and aqueous flow. Invest Ophthal Vis Sci 28:1653, 1985.Google Scholar
  60. 60.
    Moses, RA, Grodzki, WJ Jr, Carras, PL: Pseudofacility. Arch Ophthal 103:1653, 1985.Google Scholar
  61. 61.
    Brown, JD, Brubaker, RF: A study of the relation between intraocular pressure and aqueous humor flow in the pigment dispersion syndrome. Ophthalmology 96:1468, 1989.PubMedGoogle Scholar
  62. 62.
    Becker, B: The decline in aqueous secretion and outflow facility with age. Am J Ophthal 46:731, 1958.PubMedGoogle Scholar
  63. 63.
    Brubaker, RF, Nagtaki, S, Townsend, DJ, et al: The effect of age on aqueous humor formation in man. Ophthalmology 88:283, 1981.PubMedGoogle Scholar
  64. 64.
    Hayashi, M, Yablonski, ME, Boxrud, C, et al: Decreased formation of aqueous humour in insulin-dependent diabetic patients. Br J Ophthal 73:621, 1989.Google Scholar
  65. 65.
    Reiss, GR, Lee, DA, Topper, JE, Brubaker, RF: Aqueous humor flow during sleep. Invest Ophthal Vis Sci 25:776, 1984.PubMedGoogle Scholar
  66. 66.
    McLaren, JW, Trocme, SD, Relf, S, Brubaker, RF: Rate of flow of aqueous humor determined from measurements of aqueous flare. Invest Ophthal Vis Sci 31:339, 1990.PubMedGoogle Scholar
  67. 67.
    Topper, JE, Brubaker, RF: Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthal Vis Sci 26:1315, 1985.PubMedGoogle Scholar
  68. 68.
    Gharagozloo, NZ, Larson, RS, Kullerstrand, LJ, Brubaker, RF: Terbutaline stimulates aqueous humor flow in human during sleep. Arch Ophthal 106:1218, 1988.PubMedGoogle Scholar
  69. 69.
    Pederson, JE: Ocular hypotony. Trans Ophthal Soc UK 105:220, 1986.PubMedGoogle Scholar
  70. 70.
    Howes, EL, Cruse, VK: The structural basis of altered vascular permeability following intraocular inflammation. Arch Ophthal 96:1668, 1978.PubMedGoogle Scholar
  71. 71.
    Dobbie, JG: A study of the intraocular fluid dynamics in retinal detachment. Arch Ophthal 69:53, 1963.Google Scholar
  72. 72.
    Cole, DF: Aqueous and ciliary body. In: Biochemistry of the Eye, Graymore, CN, ed. Academic Press, London, 1970, p. 114.Google Scholar
  73. 73.
    De Berardinis, E, Tieri, O, Iuglio, N, Polzella, A: The composition of the aqueous humour of man in aphakia. Acta Ophthal 44:64, 1966.PubMedGoogle Scholar
  74. 74.
    Kinsey, VE: Comparative chemistry of aqueous humor in posterior and anterior chamber of rabbit eye. Its physiologic significance. Arch Ophthal 50:401, 1953.Google Scholar
  75. 75.
    Raviola, G, Butler, JM: Asymmetric distribution of charged domains on the two fronts of the endothelium of iris blood vessels. Invest Ophthal Vis Sci 26:597, 1985.PubMedGoogle Scholar
  76. 76.
    Freddo, TF, Raviola, G: The homogeneous structure of blood vessels in the vascular tree of Macaca mulatta iris. Invest Ophthal Vis Sci 22:279, 1982.PubMedGoogle Scholar
  77. 77.
    Freddo, TF, Raviola, G: Freeze-fracture analysis of the interendothelial junctions in the blood vessels of the iris in Macaca mulatta. Invest Ophthal Vis Sci 23:154, 1982.PubMedGoogle Scholar
  78. 78.
    Reddy, DVN: Chemical composition of normal aqueous humor. In: Biochemistry of the Eye, Dardenna, MU, Nordmann, J, eds. Karger, Basel, 1968, p. 167.Google Scholar
  79. 79.
    Becker, B: Chemical composition of human aqueous humor. Effects of acetazolamide. Arch Ophthal 57:793, 1957.Google Scholar
  80. 80.
    De Berardinis, E, Tieri, O, Polzella, A, Iuglio, N: The chemical composition of the human aqueous humour in normal and pathological conditions. Exp Eye Res 4:179, 1965.PubMedGoogle Scholar
  81. 81.
    Kinsey, VE, Reddy, DVN: Chemistry and dynamics of aqueous humor. In: The Rabbit in Eye Research, Prince, JH, ed. Charles C Thomas, Springfield, 111., 1964, p. 218.Google Scholar
  82. 82.
    Reiss, GR, Werness, PG, Zollman, PE, Brubaker, RF: Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. Arch Ophthal 104:753, 1986.PubMedGoogle Scholar
  83. 83.
    Freddo, TF, Bartels, SP, Barsotti, MF, Kamm, RD: The source of proteins in the aqueous humor of the normal rabbit. Invest Ophthal Vis Sci 31:125, 1990.PubMedGoogle Scholar
  84. 84.
    Pavao, AF, Lee, DA, Ethier, CR, et al: Two-dimensional gel electrophoresis of calf aqueous humor, serum, and filterbound proteins. Invest Ophthal Vis Sci 30:731, 1989.PubMedGoogle Scholar
  85. 85.
    Ethier, CR, Kamm, RD, Johnson, M, et al: Further studies on the flow of aqueous humor through microporous filters. Invest Ophthal Vis Sci 30:739, 1989.PubMedGoogle Scholar
  86. 86.
    Sen, DK, Sarin, GS, Saha, K: Immunoglobulins in human aqueous humour. Br J Ophthal 61:216, 1977.Google Scholar
  87. 87.
    Okisaka, S: Effects of paracentesis on the blood-aqueous barrier: a light and electron microscopic study on cynomolgus monkey. Invest Ophthal 15:824, 1976.PubMedGoogle Scholar
  88. 88.
    Bartels, SP, Pederson, JE, Gaasterland, DE, Armaly, MF: Sites of breakdown of the blood-aqueous barrier after paracentesis of the rhesus monkey eye. Invest Ophthal Vis Sci 18:1050, 1979.PubMedGoogle Scholar
  89. 89.
    Dickinson, JC, Durham, DG, Hamilton, PB: Ion exchange chromatography of free amino acids in aqueous fluid and lens of the human eye. Invest Ophthal 7:551, 1968.PubMedGoogle Scholar
  90. 90.
    Davson, H, Luck CP: A comparative study of the total carbon dioxide in the ocular fluids, cerebrospinal fluid, and plasma of some mammalian species. J Physiol 132:454, 1956.PubMedGoogle Scholar
  91. 91.
    Laurent, UBG: Hyaluronate in human aqueous humor. Arch Ophthal 101:129, 1983.PubMedGoogle Scholar
  92. 92.
    Trope, GE, Rumley, AG: Catecholamines in human aqueous humor. Invest Ophthal Vis Sci 26:399, 1985.PubMedGoogle Scholar
  93. 93.
    Khodadoust, AA, Stark, WJ, Bell, WR: Coagulation properties of intraocular humors and cerebrospinal fluid. Invest Ophthal Vis Sci 24:1616, 1983.PubMedGoogle Scholar
  94. 94.
    Tripathi, RC, Park, JK, Tripathi, BJ, Millard, CB: Tissue plasminogen activator in human aqueous humor and its possible therapeutic significance. Am J Ophthal 106:719, 1988.PubMedGoogle Scholar
  95. 95.
    Vadillo-Ortega, F, Gonzalez-Avila, G, Chevez, P, et al: A latent collagenase in human aqueous humor. Invest Ophthal Vis Sci 30:332, 1989.PubMedGoogle Scholar
  96. 96.
    Jocson, VL, Sears, ML: Experimental aqueous perfusion in enucleated human eyes. Arch Ophthal 86:65, 1971.PubMedGoogle Scholar
  97. 97.
    Bill, A, Phillips, CI: Uveoscleral drainage of aqueous humour in human eyes. Exp Eye Res 12:275,1971.PubMedGoogle Scholar
  98. 98.
    Pederson, JE, Gaasterland, DE, MacLellan, HM: Uveoscleral aqueous outflow in the rhesus monkey: importance of uveal reabsorption. Invest Ophthal Vis Sci 16:1008, 1977.PubMedGoogle Scholar
  99. 99.
    Inomata, H, Bill, A: Exit sites of uveoscleral flow of aqueous humor in cynomolgus monkey eyes. Exp Eye Res 25:113, 1977.PubMedGoogle Scholar
  100. 100.
    Sherman, SH, Green, K, Laties, AM: The fate of anterior chamber fluorescein in the monkey eye. I. The anterior chamber outflow pathways. Exp Eye Res 27:159, 1978.PubMedGoogle Scholar
  101. 101.
    Inomata, H, Bill, A, Smelser, GK: Unconventional routes of aqueous humor outflow in cynomolgus monkey (Macaca irus). Am J Ophthal 73:893, 1972.PubMedGoogle Scholar
  102. 102.
    McMaster, PRB, Macri, FJ: Secondary aqueous humor out flow pathways in the rabbit, cat, and monkey. Arch Ophthal 79:297, 1968.PubMedGoogle Scholar
  103. 103.
    Moses, RA, Grodzki, WF Jr: The scleral spur and scleral roll. Invest Ophthal Vis Sci 16:925, 1977.PubMedGoogle Scholar
  104. 104.
    Moses, RA, Grodzki, WJ Jr, Starcher, BC, Galione, MJ: Elastin content of the scleral spur, trabecular mesh, and sclera. Invest Ophthal Vis Sci 17:817, 1978.PubMedGoogle Scholar
  105. 105.
    Spencer, WH, Alvarado, J, Hayes, TL: Scanning electron microscopy of human ocular tissues: trabecular meshwork. Invest Ophthal 7:651, 1968.PubMedGoogle Scholar
  106. 106.
    Raviola, G: Schwalbe line’s cells: a new cell type in the tra becular meshwork of Macaca mulatta. Invest Ophthal Vis Sci 22:45, 1982.PubMedGoogle Scholar
  107. 107.
    Flocks, M: The anatomy of the trabecular meshwork as seen in tangential section. Arch Ophthal 56:708, 1957.Google Scholar
  108. 108.
    Fine, BS: Observations on the drainage angle in man and rhesus monkey: a concept of the pathogenesis of chronic simple glaucoma. A light and electron microscopic study. Invest Ophthal 3:609, 1964.PubMedGoogle Scholar
  109. 109.
    Hoffmann, F, Dumitrescu, L: Schlemm’s canal under the scanning electron microscope. Ophthal Res 2:37, 1971.Google Scholar
  110. 110.
    Rohen, JW, Rentsch, FJ: Morphology of Schlemm’s canal and related vessels in the human eye. Graefe’s Arch Oph thal 176:309, 1968.Google Scholar
  111. 111.
    Ascher, KW: The Aqueous Veins. Biomicroscopic Study of the Aqueous Humor Elimination. Charles C Thomas, Springfield, III, 1961.Google Scholar
  112. 112.
    Last, RJ: Wolff’s Anatomy of the Eye and Orbit, 5th ed. WB Saunders, Philadelphia, 1961, p. 49.Google Scholar
  113. 113.
    Rohen, JW, Rentsch, FJ: Electronmicroscopic studies on the structure of the outer wall of Schlemm’s canal, its out flow channels and age changes. Graefe’s Arch Ophthal 177:1, 1969.Google Scholar
  114. 114.
    Jocson, VL, Sears, ML: Channels of aqueous outflow and related blood vessels. I. Macaca mulatta (rhesus). Arch Ophthal 80:104, 1968.PubMedGoogle Scholar
  115. 115.
    Jocson, VL, Sears, ML: Channels of aqueous outflow and related blood vessels. II. Cercopithecus ethiops (Ethiopian green or green vervet). Arch Ophthal 81:244, 1969.PubMedGoogle Scholar
  116. 116.
    Jocson, VL, Grant, WM: Interconnections of blood vessels and aqueous vessels in human eyes. Arch Ophthal 73:707, 1965.PubMedGoogle Scholar
  117. 117.
    Gaasterland, DE, Jocson, VL, Sears, ML: Channels of aqueous outflow and related blood vessels. III. Episcleral arteriovenous anatomoses in the rhesus monkey eye (Macaca mulatta). Arch Ophthal 84:770, 1970.PubMedGoogle Scholar
  118. 118.
    Raviola, G: Conjunctival and episcleral blood vessels are permeable to blood-borne horseradish peroxidase. Invest Ophthal Vis Sci 24:725, 1983.PubMedGoogle Scholar
  119. 119.
    Ashton, N: The exit pathway of the aqueous. Trans Ophthal Soc UK 80:397, 1960.Google Scholar
  120. 120.
    Murphy, CG, Yun, A J, Newsome, DA, Alvarado, J A: Loca lization of extracellular proteins of the human trabecular meshwork by indirect immunofluorescence. Am J Ophthal 104:33, 1987.PubMedGoogle Scholar
  121. 121.
    Gong, H, Trinkaus-Randall, V, Freddo, TF: Ultrastructural immunocytochemical localization of elastin in normal human trabecular meshwork. Curr Eye Res 8:1071, 1989.PubMedGoogle Scholar
  122. 122.
    Fine, BS: Structure of the trabecular meshwork and the canal of Schlemm. Trans Am Acad Ophthal Otol 70:777, 1966.Google Scholar
  123. 123.
    Yi, Y, Li, Y: Histochemical and electron microscopic studies of the trabecular meshwork in normal human eyes. Eye Sci 1:9, 1985.Google Scholar
  124. 124.
    Raviola, G, Raviola, E: Paracellular route of aqueous out flow in the trabecular meshwork and canal of Schlemm. A freeze-fracture study of the endothelial junctions in the sclerocorneal angle of the macaque monkey eye. Invest Ophthal Vis Sci 21:52, 1981.PubMedGoogle Scholar
  125. 125.
    Grierson, I, Rahi, AHS: Microfilaments in the cells of the human trabecular meshwork. Br J Ophthal 63:3, 1979.Google Scholar
  126. 126.
    Gipson, IK, Anderson, RA: Actin filaments in cells of human trabecular meshwork and Schlemm’s canal. Invest Ophthal Vis Sci 18:547, 1979.PubMedGoogle Scholar
  127. 127.
    Ryder, MI, Weinreb, RN, Alvarado, J, Polansky, JR: The cytoskeleton of the cultured human trabecular cell. Characterization and drug response. Invest Ophthal Vis Sci 29:251, 1988.PubMedGoogle Scholar
  128. 128.
    Weinreb, RN, Ryder, MI, Polansky, JR: The cytoskeleton of the cynomolgus monkey trabecular cell. Invest Ophthal Vis Sci 27:1312, 1986.PubMedGoogle Scholar
  129. 129.
    Grierson, I, Miller, L, Yong, JD, et al: Investigations of cytoskeletal elements in cultured bovine meshwork cells. Invest Ophthal Vis Sci 27:1318, 1986.PubMedGoogle Scholar
  130. 130.
    Iwamoto, Y, Tamura, M: Immunocytochemical study of in termediate filaments in cultured human trabecular cells. Invest Ophthal Vis Sci 29:244, 1988.PubMedGoogle Scholar
  131. 131.
    Knepper, PA, Collins, JA, Weinstein, HG, Breen, M: Aqueous outflow pathway complex carbohydrate synthesis in vitro. Invest Ophthal Vis Sci 24:1546, 1983.PubMedGoogle Scholar
  132. 132.
    Ohnishi, Y, Taniguchi, Y: Distributions of 35S-sulfate and 3H-glucosamine in the angular region of the hamster: light and electron microscopic autoradiography. Invest Ophthal Vis Sci 24:697, 1983.PubMedGoogle Scholar
  133. 133.
    Richardson, TM: Distribution of glycosaminoglycans in the aqueous outflow system of the cat. Invest Ophthal Vis Sci 22:319, 1982.PubMedGoogle Scholar
  134. 134.
    Rohen, JW, Schachtschabel, DO, Berghoff, K: Histoautoradiographic and biochemical studies on human and monkey trabecular meshwork and ciliary body in short-term explant culture. Graefe’s Arch Ophthal 221:199, 1984.Google Scholar
  135. 135.
    Schachtschabel, DO, Berghoff, K, Rohen, JW: Synthesis and composition of glycosaminoglycans by explant cultures of human ciliary body and ciliary processes in serum-containing and serum-free defined media. Graefe’s Arch Ophthal 221:207, 1984.Google Scholar
  136. 136.
    Polansky, JR, Wood, IS, Maglio, MT, Alvarado, JA: Trabecular meshwork cell culture in glaucoma research: evaluation of biological activity and structural properties of human trabecular cells in vitro. Ophthalmology 91:580, 1984.PubMedGoogle Scholar
  137. 137.
    Acott, TS, Westcott, M, Passo, MS, Van Buskirk, EM: Trabecular meshwork glycosaminoglycans in human and cynomolgus monkey eye. Invest Ophthal Vis Sci 26:1320, 1985.PubMedGoogle Scholar
  138. 138.
    Yue, B YJT, Elvart, JL: Biosynthesis of glycosaminoglycans by trabecular meshwork cells in vitro. Curr Eye Res 6:959, 1987.PubMedGoogle Scholar
  139. 139.
    Berggren, L, Vrabec, F: Demonstration of a coating substance in the trabecular meshwork of the eye and its decrease after perfusion experiments with different kinds of hyaluronidase. Am J Ophthal 44:200, 1957.PubMedGoogle Scholar
  140. 140.
    Armaly, MF, Wang, Y: Demonstration of acid mucopolysaccharides in the trabecular meshwork of the rhesus monkey. Invest Ophthal 14:507, 1975.PubMedGoogle Scholar
  141. 141.
    Grierson, I, Lee, WR: Acid mucopolysaccharides in the outflow apparatus. Exp Eye Res 21:417, 1975.PubMedGoogle Scholar
  142. 142.
    Mizokami, K: Demonstration of masked acidic glycosaminoglycans in the normal human trabecular meshwork. Jap J Ophthal 21:57, 1977.Google Scholar
  143. 143.
    Worthen, DM, Cleveland, PH: Fibronectm production by cultured human trabecular meshwork cells. Invest Ophthal Vis Sci 23:797, 1985.Google Scholar
  144. 144.
    Floyd, BB, Cleveland, PH, Worthen, DM: Fibronectin in human trabecular drainage channels. Invest Ophthal Vis Sci 26:797, 1985.PubMedGoogle Scholar
  145. 145.
    Hernandez, MR, Weinstein, BI, Schwartz, J, et al: Human trabecular meshwork cells in culture: morphology and extracellular matrix components. Invest Ophthal Vis Sci 28:1655, 1987.PubMedGoogle Scholar
  146. 146.
    Lynch, MO, Peeler, JS, Brown, RH, Niederkorn, JY: Expression of HLA class I and II antigens on cells of the human trabecular meshwork. Ophthalmology 94:851, 1987.PubMedGoogle Scholar
  147. 147.
    Latina, M, Flotte, T, Crean, E, et al: Immunohistochemical staining of the human anterior segment. 106:95, 1988.Google Scholar
  148. 148.
    Stone, RA, Kuwayama, Y, Laties, AM, Marangos, PJ: Neuron-specific enolase-containing cells in the rhesus monkey trabecular meshwork. Invest Ophthal Vis Sci 25:1332, 1984.PubMedGoogle Scholar
  149. 149.
    Grierson, I, Chisholm, I A: Clearance of debris from the iris through the drainage angle of the rabbit’s eye. Br J Ophthal 62:694, 1978.Google Scholar
  150. 150.
    Grierson, I, Day, J, Unger, WG, Ahmed, A: Phagocytosis of latex microspheres by bovine meshwork cells in culture. Graefe’s Arch Ophthal 224:536, 1986.Google Scholar
  151. 151.
    Barak, MH, Weinreb, RN, Ryder, MI: Quantitative assessment of cynomolgus monkey trabecular cell phagocytosis and absorption. Curr Eye Res 7:445, 1988.PubMedGoogle Scholar
  152. 152.
    Shirato, S, Murphy, CG, Bloom, E, et al: Kinetics of phagocytosis in trabecular meshwork cells. Flow cytometry and morphometry. Invest Ophthal Vis Sci 30:2499, 1989.PubMedGoogle Scholar
  153. 153.
    Johnson, DH, Richardson, TM, Epstein, DL: Trabecular meshwork recovery after phagocytic challenge. Curr Eye Res 8:1121, 1989.PubMedGoogle Scholar
  154. 154.
    Grierson, I, Lee, WR: Erythrocyte phagocytosis in the human trabecular meshwork. Br J Ophthal 57:400, 1973.Google Scholar
  155. 155.
    Johnson, DH: Does pigmentation affect the trabecular meshwork? Arch Ophthal 107:250, 1989.PubMedGoogle Scholar
  156. 156.
    Speakman, JS: Drainage channels in the trabecular wall of Schlemm’s canal. Br J Ophthal 44:513, 1960.Google Scholar
  157. 157.
    Feeney, L, Wissig, S: Outflow studies using an electron dense tracer. Trans Am Acad Ophthal Otol 70:791, 1966.Google Scholar
  158. 158.
    Diaz, G, Orzalesi, N, Fossarello, M, et al: Coated pits and coated vesicles in the endothelial cells of trabecular mesh work. Exp Eye Res 35:99, 1982.PubMedGoogle Scholar
  159. 159.
    Diaz, G, Carta, S, Orzalesi, N: Nonrandom distribution of coated pits and vesicles in the connective tissue cells of the trabecular meshwork of rabbit. Graefe’s Arch Ophthal 224:147, 1986.Google Scholar
  160. 160.
    Anderson, DR: Scanning electron microscopy of primate trabecular meshwork. Am J Ophthal 71:90, 1971.PubMedGoogle Scholar
  161. 161.
    Johnstone, MA: Pressure-dependent changes in configuration of the endothelial tubules of Schlemm’s canal. Am J Ophthal 78:630, 1974.PubMedGoogle Scholar
  162. 162.
    Svedbergh, B: Protrusions of the inner wall of Schlemm’s canal. Am J Ophthal 82:875, 1976.PubMedGoogle Scholar
  163. 163.
    Johnstone, MA: Pressure-dependent changes in nuclei and the process origins of the endothelial cells lining Schlemm’s canal. Invest Ophthal Vis Sci 18:44, 1979.PubMedGoogle Scholar
  164. 164.
    Segawa, K: Electron microscopic observations on the replicas of Schlemm’s canal. Acta Soc Ophthal Jap 73:2013, 1969.PubMedGoogle Scholar
  165. 165.
    Segawa, K: Scanning electron microscopic studies on the iridocorneal angle tissue in normal human eyes. Acta Soc Ophthal Jap 76:659, 1972.PubMedGoogle Scholar
  166. 166.
    Holmberg, A: The fine structure of the inner wall of Schlemm’s canal. Arch Ophthal 62:956, 1959.Google Scholar
  167. 167.
    Holmberg, A: Schlemm’s canal and the trabecular mesh work. An electron microscopic study of the normal structure in man and monkey (Cercopithecus ethiops). Doc Ophthal 19:339, 1965.Google Scholar
  168. 168.
    Inomata, H, Bill, A, Smelse, GK: Aqueous humor path ways through the trabecular meshwork and into Schlemm’s canal in the cynomolgus monkey (Macaca irus). Am J Ophthal 73:760, 1972.PubMedGoogle Scholar
  169. 169.
    Segawa, K: Pores of the trabecular wall of Schlemm’s canal. Ferritin perfusion in enucleated human eyes. Acta Soc Ophthal Jap 74:1240, 1970.PubMedGoogle Scholar
  170. 170.
    Segawa, K: Pore structures of the endothelial cells of the aqueous outflow pathway: scanning electron microscopy. Jap J Ophthal 17:133, 1973.Google Scholar
  171. 171.
    Shabo, AL, Reese, TS, Gaasterland, D: Postmortem for mation of giant endothelial vacuoles in Schlemm’s canal of the monkey. Am J Ophthal 76:896, 1973.PubMedGoogle Scholar
  172. 172.
    Tripathi, RC: Ultrastructure of the trabecular wall of Schlemm’s canal in relation to aqueous outflow. Exp Eye Res 7:335, 1968.PubMedGoogle Scholar
  173. 173.
    Tripathi, RC: Mechanism of the aqueous outflow across the trabecular wall of Schlemm’s canal. Exp Eye Res 11:116, 1971.PubMedGoogle Scholar
  174. 174.
    Tripathi, RC: Ultrastructure of the exit pathway of the aqueous in lower mammals (a preliminary report on the (“angular aqueous plexus”). Exp Eye Res 12:311, 1971.PubMedGoogle Scholar
  175. 175.
    Tripathi, RC: Aqueous outflow pathway in normal and glaucomatous eyes. Br J Ophthal 56:157, 1972.Google Scholar
  176. 176.
    Sondermann, R: Beitrag zur entwicklung und morphologie des Schlemmschen kanals. Graefe’s Arch Ophthal 124:521, 1930.Google Scholar
  177. 177.
    Ashton, N, Brini, A, Smith, R: Anatomical studies of the trabecular meshwork of the normal human eye. Br J Ophthal 40:257, 1956.Google Scholar
  178. 178.
    Iwamoto, T: Further observation on Sondermann’s channels of the human trabecular meshwork. Graefe’s Arch Ophthal 172:213, 1967.Google Scholar
  179. 179.
    Lutjen-Drecoll, E, Rohen, JW: Uber die endotheliale auskleidung des Schlemmschen kanals im silberimpragnationsbild. Graefe’s Arch Ophthal 180:249, 1970.Google Scholar
  180. 180.
    de Kater, AW, Spurr-Michaud, SJ, Gipson, IK: Localization of smooth muscle myosin-containing cells in the aqueous outflow pathway. Invest Ophthal Vis Sci 31:347, 1990.PubMedGoogle Scholar
  181. 181.
    McMenamin, PG, Lee, WR, Aitken, DAN: Age-related changes in the human outflow apparatus. Ophthalmology 93:194, 1986.PubMedGoogle Scholar
  182. 182.
    Miyazaki, M, Segawa, K, Urakawa, Y: Age-related changes in the trabecular meshwork of the normal human eye. Jap J Ophthal 31:558, 1987.Google Scholar
  183. 183.
    Alvarado, J, Murphy, C, Polansky, J, Juster, R: Age-related changes in trabecular meshwork cellularity. Invest Ophthal Vis Sci 21:714, 1987.Google Scholar
  184. 184.
    Ainsworth, JR, Lee, WR: Effects of age and rapid highpressure fixation on the morphology of Schlemm’s canal. Invest Ophthal Vis Sci 31:745, 1990.PubMedGoogle Scholar
  185. 185.
    Emi, K, Pederson, JE, Toris, CB: Hydrostatic pressure of the suprachoroidal space. Invest Ophthal Vis Sci 30:233, 1989.PubMedGoogle Scholar
  186. 186.
    Raviola, G, Butler, JM: Unidirectional transport mechanism of horseradish peroxidase in the vessels of the iris. Invest Ophthal Vis Sci 25:827, 1984.PubMedGoogle Scholar
  187. 187.
    Butler, JM, Raviola, G, Beers GJ, Carter AP: Computed to mography of aqueous humor outflow pathways. Exp Eye Res 39:709, 1984.PubMedGoogle Scholar
  188. 188.
    Grant, WM: Further studies on facility of flow through the trabecular meshwork. Arch Ophthal 60:523, 1958.Google Scholar
  189. 189.
    Grant, WM: Experimental aqueous perfusion in enucleateed human eyes. Arch Ophthal 69:783, 1963.PubMedGoogle Scholar
  190. 190.
    Tripathi, RC, Tripathi, BJ: The mechanism of aqueous outflow in lower mammals. Exp Eye Res 14:73, 1972.Google Scholar
  191. 191.
    Tarkkanen, A, Niemi, M: Enzyme histochemistry of the angle of the anterior chamber of the human eye. Acta Ophthal 45:93, 1987.Google Scholar
  192. 192.
    Vegge, T: Ultrastructure of normal human trabecular endothelium. Acta Ophthal 41:193, 1963.PubMedGoogle Scholar
  193. 193.
    Johnstone, MA, Grant, WM: Pressure-dependent changes in structure of the aqueous outflow system of human and monkey eyes. Am J Ophthal 75:365, 1973.PubMedGoogle Scholar
  194. 194.
    Grierson, I, Lee, WR: Changes in the monkey outflow apparatus at graded levels of intraocular pressure: a qualitative analysis by light microscopy and scanning electron microscopy. Exp Eye Res 19:21, 1974.PubMedGoogle Scholar
  195. 195.
    Grierson, I, Lee, WR: Pressure-induced changes in the ultrastructure of the endothelium lining Schlemm’s canal. Am J Ophthal 80:863, 1975.PubMedGoogle Scholar
  196. 196.
    Kayes, J: Pressure gradient changes on the trabecular meshwork of monkeys. Am J Ophthal 79:549, 1975.PubMedGoogle Scholar
  197. 197.
    Van Buskirk, EM, Grant, WM: Influence of temperature and the question of involvement of cellular metabolism in aqueous outflow. Am J Ophthal 77:565, 1974.Google Scholar
  198. 198.
    Bill, A, Svedbergh, B: Scanning electron microscopic studies of the trabecular meshwork and the canal of Schlemm – an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthal 50:295, 1972.PubMedGoogle Scholar
  199. 199.
    Moseley, H, Grierson, J, Lee, W: Mathematical modeling of aqueous humor outflow from the eye through the pores in the lining endothelium of Schlemm’s canal. Clin Phys PhysiolMeas 4:47, 1983.PubMedGoogle Scholar
  200. 200.
    Seiler, T, Wollensak, J: The resistance of the trabecular meshwork to aqueous humor outflow. Graefe’s Arch Ophthal 223:88, 1985.Google Scholar
  201. 201.
    Ethier, CR, Kamm, RD, Palaszewski, BA, et al: Calculations of flow resistance in the juxtacanalicular meshwork. Invest Ophthalmol Vis Sci 27:1741, 1986.PubMedGoogle Scholar
  202. 202.
    Johnson, M, Ethier, CR, Kamm, RD, et al: The flow of aqueous humor through micro-porous filters. Invest Ophthal Vis Sci 27:92, 1986.PubMedGoogle Scholar
  203. 203.
    Francois, J: The importance of the mucopolysaccharides in intraocular pressure regulation. Invest Ophthal 14:173, 1975.PubMedGoogle Scholar
  204. 204.
    Hayasaka, S, Sears, ML: Distribution of acid phosphatase, beta-glucuronidase, and lysosomal hyaluronidase in the an terior segment of the rabbit eye. Invest Ophthal Vis Sci 17:982, 1978.PubMedGoogle Scholar
  205. 205.
    Grierson, I, Lee, WR, Abraham, S: A light microscopic study of the effects of testicular hyaluronidase on the outflow system of a baboon (Papio cynocephalus). Invest Ophthal Vis Sci 18:356, 1979.PubMedGoogle Scholar
  206. 206.
    Knepper, PA, Farbman, Al, Telser, AG: Exogenous hyaluronidase and degradation of hyaluronic acid in the rabbit eye. Invest Ophthal Vis Sci 25:286, 1984.PubMedGoogle Scholar
  207. 207.
    Van Buskirk, EM, Brett, J: The canine eye: in vitro dissolution of the barriers to aqueous outflow. Invest Ophthal Vis Sci 17:258, 1978.PubMedGoogle Scholar
  208. 208.
    Van Buskirk, EM, Brett, J: The canine eye: in vitro studies of the intraocular pressure and facility of aqueous outflow. Invest Ophthal Vis Sci 17:373, 1978.PubMedGoogle Scholar
  209. 209.
    Kaufman, PL, Erickson, KA, Bárány, EH: Effect of repeated anterior chamber perfusion on intraocular pressure and total outflow facility in the cynomolgus monkey. Invest Ophthal Vis Sci 24:159, 1983.PubMedGoogle Scholar
  210. 210.
    Morrison, JC, Van Buskirk, EM: The canine eye: pectinate ligaments and aqueous outflow resistance. Invest Ophthal Vis Sci 23:726, 1982.PubMedGoogle Scholar
  211. 211.
    Peterson, WS, Jocson, VL: Hyaluronidase effects of aqueous outflow resistance. Quantitative and localizing studies in the rhesus monkey eye. Am J Ophthal 77:573, 1974.PubMedGoogle Scholar
  212. 212.
    Hernandez, MR, Wenk, EJ, Weinstein, BI, et al: Glucocorticoid target cells in human outflow pathway: autopsy and surgical specimens. Invest Ophthal Vis Sci 24:1612, 1983.PubMedGoogle Scholar
  213. 213.
    Weinreb, RN, Bloom, E, Baxter, JD, et al: Detection of glucocorticoid receptors in cultured human trabecular cells. Invest Ophthal Vis Sci 21:403, 1981.PubMedGoogle Scholar
  214. 214.
    Hernandez, MR, Weinstein, BI, Wenk, EJ, et al: The effect of dexamethasone on the in vitro incorporation of precursors of extracellular matrix components in the outflow pathway region of the rabbit eye. Invest Ophthal Vis Sci 24:704, 1983.PubMedGoogle Scholar
  215. 215.
    Weinreb, RN, Mitchell, MD, Polansky, JR: Prostaglandin production by human trabecular cells: in vitro inhibition by dexamethasone. Invest Ophthal Vis Sci 24:1541, 1983.PubMedGoogle Scholar
  216. 216.
    Weinreb, RN, Polansky, JR, Alvarado, JA, Mitchell, MD: Arachidonic acid metabolism in human trabecular mesh work. Invest Ophthal Vis Sci 29:1708, 1988.PubMedGoogle Scholar
  217. 217.
    Bito, LZ, Draga, A, Blanco, J, Camras, CB: Long-term maintenance of reduced intraocular pressure by daily or twice daily topical application of prostaglandins to cat or rhesus monkey eyes. Invest Ophthal Vis Sci 24:312, 1983.PubMedGoogle Scholar
  218. 218.
    Kaufman, PL, Barany, EH: Cytochalasin B reversibly in creases outflow facility in the eye of the cynomolgus monkey. Invest Ophthal Vis Sci 16:47, 1977.PubMedGoogle Scholar
  219. 219.
    Svedbergh, B, Lutjen-Drecoll, E, Ober, M, Kaufman, PL: Cytochalasin B-induced structural changes in the anterior ocular segment of the cynomologus monkey. Invest Ophthal Vis Sci 17:718, 1978.PubMedGoogle Scholar
  220. 220.
    Johnstone, M, Tanner, D, Chau, B, Kopecky, K: Concentration-dependent morphologic effects of cytochalasin B in the aqueous outflow system. Invest Ophthal Vis Sci 19:835, 1980.PubMedGoogle Scholar
  221. 221.
    Kaufman, PL, Erickson, KA: Cytochalasin B and D dose outflow facility response relationships in the cynomolgus monkey. Invest Ophthal Vis Sci 23:646, 1982.PubMedGoogle Scholar
  222. 222.
    Kaufman, PL, Svedbergh, B, Lutjen-Drecoll, E: Medical trabeculocanalotomy in monkeys with cytochalasin B or EDTA. Ann Ophthal 11:795, 1979.Google Scholar
  223. 223.
    Bill, A, Lutjen-Drecoll, E, Svedbergh, B: Effects of intracameral Na2EDTA and EGTA on aqueous outflow routes in the monkey eye. Invest Ophthal Vis Sci 19:492, 1980.PubMedGoogle Scholar
  224. 224.
    Barany, EH: In vitro studies of the resistance to flow through the angle of the anterior chamber. Acta Soc Med Uppsal 59:260, 1954.Google Scholar
  225. 225.
    Epstein, DL, Hashimoto, JM, Anderson, PJ, Grant, WM: Effect of iodoacetamide perfusion on outflow facility and metabolism of the trabecular meshwork. Invest Ophthal Vis Sci 20:625, 1981.PubMedGoogle Scholar
  226. 226.
    Epstein, DL, Patterson, MM, Rivers, SC, Anderson, PJ: Nethylmaleimide increases the facility of aqueous outflow of excised monkey and calf eyes. Invest Ophthal Vis Sci 22:752, 1982.PubMedGoogle Scholar
  227. 227.
    Lindenmayer, JM, Kahn, MG, Hertzmark, E, Epstein, DL: Morphology and function of the aqueous outflow system in monkey eyes perfused with sulfhydryl reagents. Invest Ophthal Vis Sci 24:710, 1983PubMedGoogle Scholar
  228. 228.
    Freddo, TF, Patterson, MM, Scott, DR, Epstein, DL: Influence of mercurial sulfhydryl agents on aqueous outflow pathways in enucleated eyes. Invest Ophthal Vis Sci 25:278, 1984.PubMedGoogle Scholar
  229. 229.
    Kahn, MG, Giblin, FJ, Epstein, DL: Glutathione in calf trabecular meshwork and its relation to aqueous humor outflow facility. Invest Ophthal Vis Sci 24:1283, 1983.PubMedGoogle Scholar
  230. 230.
    Scott, DR, Karageuzian, LN, Anderson, PJ, Epstein, DL: Glutathione peroxidase of calf trabecular meshwork. Invest Ophthal Vis Sci 25:599, 1984.PubMedGoogle Scholar
  231. 231.
    Nguyen, KPV, Chung, ML, Anderson, PJ, et al: Hydrogen peroxide removal by the calf aqueous outflow pathway. Invest Ophthal Vis Sci 29:976, 1988.PubMedGoogle Scholar
  232. 232.
    Pandolfi, M, Kwaan, HC: Fibrinolysis in the anterior segment of the eye. Arch Ophthal 77:99, 1967.PubMedGoogle Scholar
  233. 233.
    Pandolfi, M: Coagulation Factor VIII localization in the aqueous outflow pathways. Arch Ophthal 94:656, 1976.PubMedGoogle Scholar
  234. 234.
    Tripathi, BJ, Geanon, JD, Tripathi, RC: Distribution of tissue plasminogen activator in human and monkey eyes. Ophthalmology 94:1434, 1987.PubMedGoogle Scholar
  235. 235.
    Park, JK, Tripathi, RC, Tripathi, BJ, Barlow, GH: Tissue plasminogen activator in the trabecular endothelium. Invest Ophthal Vis Sci 28:1341, 1987.PubMedGoogle Scholar
  236. 236.
    Shuman, MA, Polansky, JR, Merkel, C, Alvarado, JA: Tissue plasminogen activator in cultured human trabecular meshwork cells. Predominance of enzyme over plasminogen activator inhibitor. Invest Ophthal Vis Sci 29:401, 1988.PubMedGoogle Scholar
  237. 237.
    Van Buskirk, EM, Grant, WM: Lens depression and aqueous outflow in enucleated primate eyes. Am J Ophthal 76:632, 1973.PubMedGoogle Scholar
  238. 238.
    Van Buskirk, EM: Trabeculotomy in the immature, enucleated human eye. Invest Ophthal Vis Sci 16:63, 1977.PubMedGoogle Scholar
  239. 239.
    Moses, RA, Hoover, GS, Oostwouder, PH: Blood reflux in Schlemm’s canal. I. Normal findings. Arch Ophthal 97:1307, 1979.PubMedGoogle Scholar
  240. 240.
    Ellingsen, BA, Grant, WM: The relationship of pressure and aqueous outflow in enucleated human eyes. Invest Ophthal 10:430, 1971.PubMedGoogle Scholar
  241. 241.
    Ellingsen, BA, Grant, WM: Influence of intraocular pressure and trabeculotomy on aqueous outflow in enucleated monkey eyes. Invest Ophthal 10:705, 1971.PubMedGoogle Scholar
  242. 242.
    Brubaker, RF: The effect of intraocular pressure on conventional outflow resistance in the enucleated human eye. Invest Ophthal 14:286, 1975.PubMedGoogle Scholar
  243. 243.
    Grierson, I, Lee, WR: The fine structure of the trabecular meshwork at graded levels of intraocular pressure. (1) Pressure effects within the near-physiological range (8–30 mm Hg). Exp Eye Res 20:505, 1975.PubMedGoogle Scholar
  244. 244.
    Grierson, I, Lee, WR: The fine structure of the trabecular meshwork at graded levels of intraocular pressure. (2) Pressure outside the physiological range (0 and 50 mm Hg). Exp Eye Res 20:523, 1975.PubMedGoogle Scholar
  245. 245.
    Ellingsen, B A, Grant, WM: Trabeculotomy and sinusotomy in enucleated human eyes. Invest Ophthal 11:21, 1972.PubMedGoogle Scholar
  246. 246.
    Moses, RA: The conventional outflow resistances. Am J Ophthal 92:804, 1981.PubMedGoogle Scholar
  247. 247.
    Hashimoto, JM, Epstein, DL: Influence of intraocular pressure on aqueous outflow facility in enucleated eyes of different mammals. Invest Ophthal Vis Sci 19:1483, 1980.PubMedGoogle Scholar
  248. 248.
    Moses, RA, Arnzen, RJ: The trabecular mesh: a mathematical analysis. Invest Ophthal Vis Sci 19:1490, 1980.PubMedGoogle Scholar
  249. 249.
    Van Buskirk, EM: Changes in the facility of aqueous outflow induced by lens depression and intraocular pressure in excised human eyes. Am J Ophthal 82:736, 1976.PubMedGoogle Scholar
  250. 250.
    Moses, RA, Etheridge, EL, Grodzki, WJ Jr: The effect of lens depression on the components of outflow resistance. Invest Ophthal Vis Sci 22:37, 1982.PubMedGoogle Scholar
  251. 251.
    Van Buskirk, EM: Anatomic correlates of changing aqueous outflow facility in excised human eyes. Invest Ophthal Vis Sci 22:625, 1982.PubMedGoogle Scholar
  252. 252.
    Rosenquist, RC Jr, Melamed, S, Epstein, DL: Anterior and posterior axial lens displacement and human aqueous outflow facility. Invest Ophthal Vis Sci 29:1159, 1988.PubMedGoogle Scholar
  253. 253.
    Moses, RA, Grodzki, WJ Jr: Choroid tension and facility of aqueous outflow. Invest Ophthal Vis Sci 16:1062, 1977.PubMedGoogle Scholar
  254. 254.
    Rosenquist, R, Epstein, D, Melamed, S, et al: Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res 8:1233, 1989.PubMedGoogle Scholar
  255. 255.
    Peterson, WS, Jocson, VL, Sears, ML: Resistance to aqueous outflow in the rhesus monkey eye. Am J Ophthal 72:445, 1971.PubMedGoogle Scholar
  256. 256.
    Kollarits, CR, Gaasterland, D, Di Chiro, G, et al: Manage ment of a patient with orbital varices, visual loss, and ipsilateral glaucoma. Ophthal Surg 8:54, 1977.Google Scholar
  257. 257.
    Brubaker, RF: Determination of episcleral venous pressure in the eye. A comparison of three methods. Arch Ophthal 77:110, 1967.PubMedGoogle Scholar
  258. 258.
    Podos, SM, Minas, TF, Macri, FJ: A new instrument to measure episcleral venous pressure. Comparison of normal eyes and eyes with primary open-angle glaucoma. Arch Ophthal 80:209, 1968.PubMedGoogle Scholar
  259. 259.
    Krakau, CET, Widakowich, J, Wilke, K: Measurements of the episcleral venous pressure by means of an air jet. Acta Ophtha l51:185, 1973.Google Scholar
  260. 260.
    Phelps, CD, Armaly, MF: Measurement of episcleral venous pressure. Am J Ophthal 85:35, 1978.PubMedGoogle Scholar
  261. 261.
    Zeimer, RC, Gieser, DK, Wilensky, JT, et al: A practical venomanometer. Measurement of episcleral venous pressure and assessment of the normal range. Arch Ophthal 101:1447, 1983.PubMedGoogle Scholar
  262. 262.
    Gaasterland, DE, Pederson, JE: Episcleral venous pressure: a comparison of invasive and noninvasive measure ments. Invest Ophthal Vis Sci 24:1417, 1983.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Bruce Shields
    • 1
  • Günter Karl Krieglstein
    • 2
  1. 1.Department of OphtalmologyDuke University Medical CenterDurhamUSA
  2. 2.Direktor der Universitäts-Augenklinik KölnKölnDeutschland

Personalised recommendations