Skip to main content

Mineral Nutrition: Aluminium

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany/Fortschritte der Botanik ((BOTANY,volume 53))

Abstract

Carnations and roses keep fresher and remain beautiful for longer, if the cut flowers are supplied with 10-4 to 10-3 M A12(SO4)3 solution via their petioles, as compared to controls in the absence of A1 (Schnabl and Ziegler 1974a). In Venezuelan gallery forests, Vochysia venezolensis, a Vochysiaceae covered with brilliantly yellow inflorescences in the flowering season, may accumulate up to 25 000 ppm of A1 in its dry matter (Eiten 1972; Sarmiento 1984). The increasing interest in aluminium of late is promoted, however, by much less agreeable matters, among which are the decline of forests under the impact of acid rain, the death of animal life in lakes and rivers and the deeply distressing senile dementia, Alzheimer’s disease, of humans. In relation to forest decline, Ulrich (1981; Matzner and Ulrich 1985) is the strongest protagonist of an ecosystem concept where acidification of the soil and concurrent solubilization of A1 are considered prime causes of tree diseases. In a forceful attempt to explain forest decline on the basis of soil chemistry and plant nutrition, Schulze (1989) also underlines the role of decreasing Ca and Mg to A1 ratios, i.e. cation deficiencies, in acidifying soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad N, Jones RL (1969) Soil Sci Soc Am Proc 33: 762–768.

    CAS  Google Scholar 

  • Andrew CS, Johnson AD, Sandland RL (1973) Aust J Agric Res 24: 325–339.

    CAS  Google Scholar 

  • Aniol A, Gustafson JP (1989) In: Shaw J (ed) Heavy metal tolerance in plants evolutionary aspects. CRC, Boca Raton, pp 255–267.

    Google Scholar 

  • ASP H, Berggren D (1990) Physiol Plant 80: 307–314.

    CAS  Google Scholar 

  • Bauch J (1983) GSF-Ber, München A3: 49–57.

    Google Scholar 

  • Bauch J, Schröder W (1982) Forstwiss Centralbl 101: 285–294.

    Google Scholar 

  • Bauch J, Rademacher P, Berneike W et al. (1985a) VDI–Ber 560: 943–959.

    CAS  Google Scholar 

  • Bauch J, Stienen H, Ulrich B, Matzner E (1985b) Allg Forstz 43: 1148–1150.

    Google Scholar 

  • Bengtsson B, Asp H, Jensen P, Berggren D (1988) Physiol Plant 74: 299–305.

    CAS  Google Scholar 

  • Bennet RJ, Breen CM (1991) Environ Exp Bot 31: 153–163.

    Google Scholar 

  • Bennet RJ, Breen CM, Fey MV (1987) Environ Exp Bot 27: 91–104.

    CAS  Google Scholar 

  • Bush DS, Jones RL (1987) Cell Calcium 8: 455–472.

    PubMed  CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) J Plant Physiol 138:40(M03. Caldwell CR (1989) Plant Physiol 91: 233–241.

    Google Scholar 

  • Caldwell CR, Haug A (1982) Physiol Plant 54: 112–116.

    CAS  Google Scholar 

  • Campbell LG, Lafever HN (1981) Cereal Res Commun 9: 281–287.

    CAS  Google Scholar 

  • Chen J, Sucoff EI, Stadelmann EJ (1991) Plant Physiol 96: 644–649.

    PubMed  CAS  Google Scholar 

  • Clarkson D (1966) Plant Physiol 41: 165–172.

    PubMed  CAS  Google Scholar 

  • Clarkson DT (1969) In: Rorison IH (ed) Ecological aspects of the mineral nutrition in plants. Blackwell, Oxford, pp 381–397.

    Google Scholar 

  • Clarkson DT, Lüttge U (1989) In: Behnke H-D, Esser K, Kubitzki K, Runge M, Ziegler H (eds) Progress in botany, vol 51. Springer, Berlin Heidelberg New York, pp 93–112.

    Google Scholar 

  • Clarkson DT, Lüttge U (1990) In: Behnke H-D, Esser K, Kubitzki K, Runge M, Ziegler H (eds) Progress in botany, vol 52. Springer, Berlin Heidelberg New York, pp 61–83.

    Google Scholar 

  • Clarkson DT, Sanderson J (1969) Planta 89: 136–154.

    CAS  Google Scholar 

  • Clarkson DT, Sanderson J (1971) J Exp Bot 22: 837–851.

    CAS  Google Scholar 

  • Cockcroft S (1987) Trends Biochem Sci 12: 75–78.

    CAS  Google Scholar 

  • Crapper DR, Krisnan SS, Quittkat S (1976) Brain 99: 67–80.

    PubMed  CAS  Google Scholar 

  • Cuenca G, Herrera R, Medina E (1990) Plant Soil 125: 169–175.

    CAS  Google Scholar 

  • Cuenca G, Herrera R, Mènda T (1991) Plant Cell Environ 14: 437–441.

    CAS  Google Scholar 

  • Cumming JR, Weinstein LH (1990) New Phytol 116: 99–106.

    CAS  Google Scholar 

  • Deeleers M (1985) Res Commun Chem Pathol Pharmacol 49: 277–294.

    Google Scholar 

  • Driscoll CT Jr, Baker JP, Bisogni JJ Jr, Schofìeld CL (1980) Nature (Lond) 284: 161–164.

    CAS  Google Scholar 

  • Dupuls A, Issartel J-P, Vignais PV (1989) FEBS Lett 255: 47–52.

    Google Scholar 

  • Eiten G (1972) Bot Rev 38: 201–341.

    Google Scholar 

  • Evers FH (1981) Forstwiss Centralbl 100: 253–266.

    Google Scholar 

  • Foy CD, Chaney RR, White MC (1978) Annu Rev Plant Physiol 29: 511–566.

    CAS  Google Scholar 

  • Galvez L, Clark RB, Gourley LM, Maranville JW (1987) J Plant Nutrit 10: 1139–1147.

    CAS  Google Scholar 

  • Godbold DL, Fritz E, Hüttermann A (1988) Proc Natl Acad Sci USA 85: 3888–3892.

    PubMed  CAS  Google Scholar 

  • Grauer UE, Horst WJ (1990) Plant Soil 127: 13–21.

    CAS  Google Scholar 

  • Grignon C, Sentenac H (1991) Annu Rev Plant Physiol Mol Biol (in press).

    Google Scholar 

  • Hampp R, Schnabl H (1975) Z Pflanzenphysiol 76: 300–306.

    CAS  Google Scholar 

  • Hanson WD (1991) Crop Sci 31: 125–129.

    CAS  Google Scholar 

  • Haug A (1984) CRC Crit Rev Plant Sci 1: 345–373.

    CAS  Google Scholar 

  • Hecht-Buchholz C (1979) Commun Soil Sci Plant Anal 10: 67–81.

    CAS  Google Scholar 

  • Hedrich R, Schroeder JI (1989) Annu Rev Plant Physiol 40: 539–569.

    Google Scholar 

  • Hepler PK, Wayne RD (1985) Annu Rev Plant Physiol 36: 397–439.

    CAS  Google Scholar 

  • Hodson MJ, Wilkins DA (1991) New Phytol 118: 273–278.

    CAS  Google Scholar 

  • Huang JW, Kochian LV, Gruñes DL, Schaff JE (1991) Plant Physiol 96 (Suppl 3): 757.

    Google Scholar 

  • Huett DO, Menary RC (1980) Aust J Plant Physiol 7: 101–111.

    CAS  Google Scholar 

  • Jensén P, Pettersson S, Drakenberg T, Asp H (1989) J Plant Physiol 134: 37–42.

    Google Scholar 

  • Jentschke G (1989) Die Wirkung von Aluminium, Blei und Stickstoff auf mykorrhizierte Fichtenkeimlinge in monoxenischer Sandkultur. Thesis, Univ Gòttingen.

    Google Scholar 

  • Jentschke G, Godbold DL, Hüttermann A (1991) Physiol Plant 81: 408–416.

    CAS  Google Scholar 

  • Johnson RE, Jackson WA (1964) Proc Soil Sci Soc Am 28: 381–386.

    CAS  Google Scholar 

  • Jorns A, Hecht–Buchholz C (1985) Allg Forstz 40: 1248–1252.

    Google Scholar 

  • Juniper BE, Groves S, Landau–Schachar B, Audus, LJ (1966) Nature (Lond) 209: 93–94.

    Google Scholar 

  • Karlik SJ, Eichorn GL, Lewis PN, Crapper DR (1980) Biochemistry 23: 5991–5998.

    Google Scholar 

  • Kinraide TB (1988) Plant Physiol 88: 418–423.

    PubMed  CAS  Google Scholar 

  • Kinraide TB (1990) Plant Physiol 93: 1620–1625.

    PubMed  CAS  Google Scholar 

  • Kinraide TB, Parker DR (1987) Plant Physiol 83: 546–551.

    PubMed  CAS  Google Scholar 

  • Kinraide TB, Parker DR (1989) Plant Cell Environ 12: 479–487.

    CAS  Google Scholar 

  • Kinraide TB, Parker DR (1990) Physiol Plant 79: 283–288.

    CAS  Google Scholar 

  • Kinzel H (1982) In: Kinzel H (ed) Pflanzenòkologie und Mineralstoffwechsel. Ulmer, Stuttgart pp 216–380.

    Google Scholar 

  • Kochian LV, Shaff JE (1991) Plant Soil (in press). Konlshi S, Miyamoto S (1983) Plant Cell Physiol 24:857–862.

    Google Scholar 

  • Konishi S, Ferguson IB, Putterill J (1988) Plant Sci 56: 55–59.

    CAS  Google Scholar 

  • Kruger E, Sucoff E (1989a) J Exp Bot 40: 653–658.

    CAS  Google Scholar 

  • Kruger E, Sucoff E (1989b) J Exp Bot 40: 659–665.

    CAS  Google Scholar 

  • Lindberg S (1990) Physiol Plant 79: 275–282.

    CAS  Google Scholar 

  • Lunardi J, Dupuis A, Garin J et al. (1988) Proc Nad Acad Sei USA 85: 8958–8962.

    CAS  Google Scholar 

  • MacDonald TL, Martin RB (1988) UBS 13: 15–19.

    Google Scholar 

  • Magyar GM, Stout RG, Callis PR, Wilhams SA (1989) Plant Sei 65: 153–160.

    CAS  Google Scholar 

  • Matsumoto H (1988) Soil Sei Plant Nutrit 34: 499–506.

    CAS  Google Scholar 

  • Matsumoto H, Morimura S (1980) Plant Cell Physiol 21: 951–959.

    CAS  Google Scholar 

  • Matsumoto H, Yamaya T (1986) Soil Sei Plant Nutrit 32: 179–188.

    CAS  Google Scholar 

  • Matsumoto H, Hirasawa E, Torikai H, Takahashi E (1976) Plant Cell Physiol 17: 127–137.

    CAS  Google Scholar 

  • Matzner E, Ulrich B (1985) Experientia 41: 578–584.

    Google Scholar 

  • Medina E (1982) In: Hundey BJ, Walker BH (eds) Ecological studies, vol 42: Ecology of tropical savannas. Springer, Berlin Heidelberg New York, pp 308–335.

    Google Scholar 

  • Miranda LN, Rowell DL (1989) New Phytol 113: 7–12.

    Google Scholar 

  • Miyasaka SC, Kochian LV, Shaff JE, Foy CD (1989) Plant Physiol 91: 1188–1196.

    PubMed  CAS  Google Scholar 

  • Moore CS, Ritchie GSP (1988) J Soil Sei 39: 1–8.

    CAS  Google Scholar 

  • Mugwira LM, Elgawhary SM, Patel KI (1976) Agronom J 68: 782–786.

    CAS  Google Scholar 

  • Murach D, Rapp C, Ulrich B (1988) In: Bauch J, Michaelis W (eds) Das Forschungsprogramm Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS–Forschungszentrum Geesthacht, pp 189–214.

    Google Scholar 

  • Olivetti GP, Etherton B (1991) Plant Physiol 96 (Suppl 142): 939.

    Google Scholar 

  • Ownby JD, Hruschka WR (1991) Plant Cell Environ 14: 303–309.

    CAS  Google Scholar 

  • Ownby JD, Pennington J (1991) Plant Physiol (in press).

    Google Scholar 

  • Ownby JD, Popham HR (1989) J Plant Physiol 135: 588–591.

    Google Scholar 

  • Parry OW, Soni SL (1972) Ann Bot (Lond) 36: 781–783.

    CAS  Google Scholar 

  • Perl DP, Gajousek DC, Garruto RM et al. (1982) Science 217: 1053–1055.

    PubMed  CAS  Google Scholar 

  • Pettersson S, Strid H (1989a) J Plant Physiol 134: 672–677.

    CAS  Google Scholar 

  • Pettersson S, Strid H (1989b) Physiol Plant 76: 255–261.

    CAS  Google Scholar 

  • Pfeffer PE, Tu S-I, Gerasimowicz WV, Cavanaugh JR (1986) Plant Physiol 80: 77–84.

    PubMed  CAS  Google Scholar 

  • Pfeffer PE, Tu S-I, Gerasimowicz WV, Boswell RT (1987) Planta 172:200–208. Ponnamperuma FN (1982) In: Scaife A (ed) Proc 9th Int Plant Nutrit Colloq, vol 2. Commonwealth Bureau, Slough UK, pp 467–473.

    Google Scholar 

  • Putterill JJ, Gardner RC (1988) Biochem Biophys Acta 964: 137–145.

    CAS  Google Scholar 

  • Puthato V, Cruz-Ortega R, Johnson J, Ownby J (1991) Plant Soil (in press).

    Google Scholar 

  • Rademacher P, Bauch J, Michaelis W (1988) In: Bauch J, Michaelis W (eds) Das Forschungsprogramm Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS-Forschungszentrum, Geesthacht, pp 215–254.

    Google Scholar 

  • Reid DA (1971) In: Nilan RA (ed) Barley genetics, II. Proc 2nd Int Barley genetics Symp. Washington State Univ Press, pp 409–413.

    Google Scholar 

  • Rengel Z (1990) Plant Physiol 93: 1261–1267.

    PubMed  CAS  Google Scholar 

  • Rengel Z, Robinson DL (1989a) Plant Soil 116: 223–227.

    CAS  Google Scholar 

  • Rengel Z, Robinson DL (1989b) Plant Physiol 91: 1407–1413.

    PubMed  CAS  Google Scholar 

  • Rosseland BO, Eldhuset TD, Staumes M (1990) Environ Geochem Health 12: 17–27.

    CAS  Google Scholar 

  • Ryan PR, Kochian LV (1991) Plant Physiol 96 (Suppl 3): 754.

    Google Scholar 

  • Sangster AG, Parry DW (1976) Ann Bot (Lond) 40: 373–379.

    Google Scholar 

  • Sarmiento G (1984) The ecology of neotropical savannas. Univ Press, Harvard Mass.

    Google Scholar 

  • Schaeffer HJ, Walton JD (1990) Plant Physiol 94: 13–19.

    PubMed  CAS  Google Scholar 

  • Schnabl H (1976) Z Pflanzenphysiol 77: 167–173.

    CAS  Google Scholar 

  • Schnabl H, Ziegler H (1974a) Ber Dtsch Bot Ges 87: 13–20.

    CAS  Google Scholar 

  • Schnabl H, Ziegler H (1974b) Z Pflanzenphysiol 74: 394–403.

    CAS  Google Scholar 

  • Schroder WH, Bauch J, Endeward R (1988) Trees 2: 96–103.

    Google Scholar 

  • Schroeder JI (1987) K+-Kanäle in der Plasmamembran an Schließzellen. Eine Patch-Clamp Untersuchung molekularer Mechanismen des K+- Transportes in höheren Pflanzenzellen. Diss, Univ Göttingen.

    Google Scholar 

  • Schroeder JI (1988) J Gen Physiol 92: 667–683.

    PubMed  CAS  Google Scholar 

  • Schulze ED (1989) Science 244: 776–783.

    PubMed  CAS  Google Scholar 

  • Sentenac H, Grignon C (1987) Plant Physiol 84: 1367–1372.

    PubMed  CAS  Google Scholar 

  • Siegel N, Haug A (1983a) Physiol Plant 59: 285–291.

    CAS  Google Scholar 

  • Siegel N, Haug A (1983b) Biochem Biophys Acta 744: 36–45.

    PubMed  CAS  Google Scholar 

  • Släski JJ (1989) J Plant Physiol 133: 696–701.

    Google Scholar 

  • Släski JJ (1990) J Plant Physiol 136:4(M4. Sterweis PC, Gilman AG (1982) Proc Nad Acad Sci USA 79: 4888–4891.

    Google Scholar 

  • Stienen H, Barckhausen R, Schaub H, Bauch J (1984) Forstwiss Centralbl 103: 262–274.

    Google Scholar 

  • Suhayda CG, Haug A (1984) Biochem Biophys Res Commun 119: 376–381.

    PubMed  CAS  Google Scholar 

  • Suhayda CG, Haug A (1986) Physiol Plant 68: 189–195.

    CAS  Google Scholar 

  • Takmaz-Nisancioglu S, Davison AW (1988) New Phytol 109: 145–155.

    Google Scholar 

  • Taylor GJ (1988) In: Sigel H (ed) Metal ions in biological systems, vol 24. Dekker, New York, pp 165–198.

    Google Scholar 

  • Taylor GJ, Foy CD (1985a) Am J Bot 72: 695–701.

    CAS  Google Scholar 

  • Taylor GJ, Foy CD (1985b) Am J Bot 72: 702–706.

    CAS  Google Scholar 

  • Tischner R, Kaiser U, Hüttermann A (1983) Forstwiss Centralbl 102: 329–336.

    Google Scholar 

  • Tu S-I, Brouillette JN (1987) Phytochemistry 26: 65–69.

    Google Scholar 

  • Ulrich B (1981) Forstwiss Centralbl 100: 228–236.

    Google Scholar 

  • Väre H (1990) New Phytol 116: 663–668.

    Google Scholar 

  • Vierstra R, Haug A (1978) Biochem Biophys Res Commun 84: 138–143.

    PubMed  CAS  Google Scholar 

  • Wakui M, Itaya K, Birehall D, Petersen OH (1990) FEBS Lett 267: 301–304.

    PubMed  CAS  Google Scholar 

  • Wallace A, Fröhlich E, Lunt O (1966) Nature (Lond) 209: 634.

    CAS  Google Scholar 

  • Weiss GB (1974) Annu Rev Pharmacol 14: 343–354.

    CAS  Google Scholar 

  • Zhang G, Taylor GJ (1989) Plant Physiol 91: 1094–1099.

    PubMed  CAS  Google Scholar 

  • Zhang G, Taylor GJ (1990) Plant Physiol 94: 577–584.

    PubMed  CAS  Google Scholar 

  • Zhao X–J, Sucoff E, Stadelmann EJ (1987) Plant Physiol 83: 159–162.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüttge, U., Clarkson, D.T. (1992). Mineral Nutrition: Aluminium. In: Behnke, HD., Esser, K., Kubitzki, K., Runge, M., Ziegler, H. (eds) Progress in Botany. Progress in Botany/Fortschritte der Botanik, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77047-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77047-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77049-4

  • Online ISBN: 978-3-642-77047-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics