Advertisement

Population Genetics

  • Klaus Wöhrmann
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 53)

Abstract

The statement of Scharloo quoted above makes perfectly clear the desire of evolutionary biologists to link genetic variation and phenotypic response to the environment. This desire is not new. As early as 1884, Naegeli distinguished between environmentally induced, nonheritable change in the phenotype of an individual (modification) and a heritable change in the genetic material which was called mutation or dauermodifikation. At about the same time, Weismann (1885) pointed out the difference between the germ plasm, associated with the transmission of genetic information, and the soma which interacts with the environment. Since that time biologists have thought about and worked on the link between the genotype (idiotype) and the phenotype and its importance for the evolution of the organisms.

Keywords

Genetic Correlation Phenotypic Plasticity Germ Plasm Vegetative Plant Growth Additive Genetic Covariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S (1989) Plant Syst Evol 168: 19–38.CrossRefGoogle Scholar
  2. Antonovics J (1976) Ann Mo Bot Gard 63: 224–247.CrossRefGoogle Scholar
  3. Berg RL (1960) Evolution 114: 171–180.CrossRefGoogle Scholar
  4. Bierzychudek P (1989) Evolution 43: 1456–1466.CrossRefGoogle Scholar
  5. Bradshaw AD (1965) Adv Gnet 13: 115–155.CrossRefGoogle Scholar
  6. Cannon WB (1929) Phys Rev 9: 399–414.Google Scholar
  7. Caswell H (1983) Am Zool 23: 35–46.Google Scholar
  8. Cheverud JM (1982) Evolution 36: 499–516.CrossRefGoogle Scholar
  9. Cheverud JM (1984) i Theor Biol 110:155–171.Google Scholar
  10. Clausen J, Keck DD, Hiesey WM (1948) Carnegie Inst Washington Publ 581: 1–129.Google Scholar
  11. De Jong G (1989) In: Fontdevila A (ed) Evolutionary biology of transient unstable populations. Springer, Berlin Heidelberg New York, pp 3–18.CrossRefGoogle Scholar
  12. De Jong G (1990a) Genetica 81: 171–178.CrossRefGoogle Scholar
  13. De Jong G (1990b) J Evol Biol 3: 447–468.CrossRefGoogle Scholar
  14. Dobzhansky T (1956) Am Nat 90: 337.CrossRefGoogle Scholar
  15. Gebhardt MD, Steams SC (1988) J Evol Biol 1: 335–354.CrossRefGoogle Scholar
  16. Gregorius HR (1977) Theor Appl Genet 49: 165–176.CrossRefGoogle Scholar
  17. Gupta P, Lewontin RC (1982) Evolution 36: 934–948.CrossRefGoogle Scholar
  18. Harder R (1938) Naturwissenschaften 26: 713.CrossRefGoogle Scholar
  19. Hirose T (1987) Funct Ecol 1: 195–202.CrossRefGoogle Scholar
  20. Jain SK (1978) Experientia (Basel) 4: 835–836.CrossRefGoogle Scholar
  21. Johannsen W (1926) Elemente der exakten Erblichkeitslehre, 3rd edn, Fischer, Jena.Google Scholar
  22. Khan MA, Antonovics J, Bradshaw AD (1976) Aust J Agric Res 27: 649–659.CrossRefGoogle Scholar
  23. Kirkpatrick M, Heckman N (1989) J Math Biol 27: 429–450.PubMedCrossRefGoogle Scholar
  24. Kuiper D, Kuiper PJC (1988) Acta Oecol Plant 9: 43–60.Google Scholar
  25. Kuiper D, Smid A (1985) Physiol Plant 65: 520–528.CrossRefGoogle Scholar
  26. Kuiper D, Staal M (1986) Physiol Plant 66: 674–678.CrossRefGoogle Scholar
  27. Lande R (1982) Ecology 63: 607–615.CrossRefGoogle Scholar
  28. Lande R, Arnold SJ (1983) Evolution 37: 1210–1226.CrossRefGoogle Scholar
  29. Levins R (1968) Evolution in changing environments. Univ Press, Princeton.Google Scholar
  30. Lötz LAP, Blom CWPM (1986) Oecologia (Berlin) 69: 25–30.CrossRefGoogle Scholar
  31. Lötz LAP, Blom CWPM (1986) Oecologia (Berlin) 69: 25–30.Google Scholar
  32. MacDonald SE, Chinnappa CC (1989) Am J Bot 76: 1627–1637.CrossRefGoogle Scholar
  33. MacDonald SE, Reid DM, Chinnappa CC (1986) Can J Bot 64: 2617–2621.CrossRefGoogle Scholar
  34. MacDonald SE, Chinnappa CC, Reid DM (1988) Evolution 42: 1036–1046.CrossRefGoogle Scholar
  35. Marshall DL, Levin DA, Fowler NL (1985) J Ecol 73: 71–81.CrossRefGoogle Scholar
  36. Marshall DL, Levin DA, Fowler NL (1986) Am Nat 127: 508–521.CrossRefGoogle Scholar
  37. Marshall DR, Jain SK (1968) Am Nat 102: 457–467.CrossRefGoogle Scholar
  38. Murphy PA, Giesel JT, Manlove MN (1983) Am Nat 119: 464–479.Google Scholar
  39. Muslemanie N, Mahn EG (1990) Flora 184: 119–130.Google Scholar
  40. Naegeli C (1884) Mechanische-physiologische Theorie der Abstammungslehre. Oldenbourg, München Leipzig. Neuffer B, Hurka H (1986a) Plant Syst Evol 152: 277–296.Google Scholar
  41. Neuffer B, Hurka H (1986b) Plant Syst Evol 153: 265–279.CrossRefGoogle Scholar
  42. Ohlson M (1989) Holarct Ecol 12: 46–53.Google Scholar
  43. Perkins JM, Jinks JL (1973) Heredity 23: 127–138.Google Scholar
  44. Quinn JA (1987) In: Urbanska KM (ed) Differentiation patterns in higher plants. Academic Press, San Diego London, pp 53–67.Google Scholar
  45. Rice SA, Bazzaz FA (1989) Oecologia (Berlin) 78: 502–507.CrossRefGoogle Scholar
  46. Scharloo W (1984) In: Wöhrmann K, Loeschcke V (eds) Population biology and evolution. Springer, Berlin Heidelberg New York, pp 5–15.CrossRefGoogle Scholar
  47. Scharloo W (1987) 230–250. In: Loeschcke V (ed) Genetic constraints on adaptive evolution. Springer, Berlin Heidelberg New York, pp 125–148.Google Scholar
  48. Scharloo W (1988) In: de Jong G (ed) Population genetics and evolution. Springer, Berlin Heidelberg New York, pp 230–250.Google Scholar
  49. Scharloo W (1989) Biosciences 39: 465–471.CrossRefGoogle Scholar
  50. Scheiner SM, Goodnight CJ (1984) Evolution 38: 845–355.CrossRefGoogle Scholar
  51. Scheiner SM, Lyman FR (1989) J Evol Biol 2: 95–107.CrossRefGoogle Scholar
  52. Scheiner SM, Teeri JA (1986) Can J Bot 64: 739–747.CrossRefGoogle Scholar
  53. Schlichting CD (1986) Annu Rev Ecol System 17: 667–694.CrossRefGoogle Scholar
  54. Schlichting CD (1989a) Bioscience 39: 460–464.CrossRefGoogle Scholar
  55. Schlichting CD (1989b) Oecologia 78: 496–501.CrossRefGoogle Scholar
  56. Schlichting CD, Levin DA (1984) AM J Bot 71: 252–260.CrossRefGoogle Scholar
  57. Schlichting CD, Levin DA (1986a) Biol J Linn Soc 29: 37–47.CrossRefGoogle Scholar
  58. Schlichting CD, Levin DA (1986b) Theor Appl Genet 72: 114–119.CrossRefGoogle Scholar
  59. Schlichting CD, Levin DA (1990) J Evol Biol 3: 411–428.CrossRefGoogle Scholar
  60. Schwaegerle KE, Bazzaz FA (1987) Ecology 68: 54–65.CrossRefGoogle Scholar
  61. Simpson DA (1988) Watsonia 17: 121–132.Google Scholar
  62. Smith-Gill SJ (1983) Am Zool 23: 47–55.Google Scholar
  63. Stearns SC (1989) Bioscience 39: 436–445.CrossRefGoogle Scholar
  64. Sultan SE (1987) Evol Biol 21: 127–178.Google Scholar
  65. Taylor DR, Aarssen LW (1988) Am J Bot 75: 401–413.CrossRefGoogle Scholar
  66. Tucic B, Tarasjev A, Vujcic S et al. (1990) Plant Syst Evol 170: 1–10.CrossRefGoogle Scholar
  67. Van Noordwijk A (1989) Bioscience 39: 453–458.CrossRefGoogle Scholar
  68. Via S (1987) In: Loeschcke V (ed) Genetic constraints on adaptive evolution. Springer, Berlin Heidelberg New York, pp 47–71.CrossRefGoogle Scholar
  69. Via S, Lande R (1985) Evolution 39: 505–523.CrossRefGoogle Scholar
  70. Via S, Lande R (1987) Genet Res 28: 95–110Google Scholar
  71. Waddington CH (1940) J Genet 41: 75–81.CrossRefGoogle Scholar
  72. Waddington CH (1957) The strategies of genes. Allen & Unwin, London.Google Scholar
  73. Weismann A (1885) In: Aufsätze über Vererbung und verwandte biologische Fragen. Fischer, Jena 1892, pp 191–218.Google Scholar
  74. West-Eberhard MJ (1989) Annu Rev Ecol System 20: 249–278.CrossRefGoogle Scholar
  75. Woltereck R (1909) Verh Dtsch Zool Ges 19: 110–121.Google Scholar
  76. Wood H, Degabriele R (1985) Aust J Bot 33: 677–686.CrossRefGoogle Scholar
  77. Wu HP (1975) In: Matsuo T (ed) Adaptability in plants. Univ Press, Tokyo, pp 17–23.Google Scholar
  78. Zakharov VM (1989) Sov Sci Rev F Physiol Gen Biol 4: 1–79.Google Scholar
  79. Zangerl AR, Bazzaz FA (1983) Oecologia 57: 270–273.CrossRefGoogle Scholar
  80. Zelditch ML (1988) Evolution 42: 28–41.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Klaus Wöhrmann
    • 1
  1. 1.Institut für Biologie IIUniversität TübingenTübingen 1Germany

Personalised recommendations