Skip to main content

The Developmental Regulation of the Genes Coding for 5S Ribosomal RNA in Xenopus laevis

  • Chapter
Development
  • 219 Accesses

Abstract

Xenopus laevis, the South African clawed toad, is a popular animal for research into oogenesis and embryogenesis. The large oocytes and eggs of Xenopus can be microinjected easily and many early experiments focussed on introducing first nuclei, and later DNA, RNA, and protein into these living ‘test tubes’. The results of these experiments, many of them initiated in the laboratories of J. B. Gurdon and D. D. Brown, have vastly increased our understanding of replication, transcription, and translation of eukaryotes. These studies have led to the discovery of DNA amplification, the isolation and sequencing of the first eukaryotic gene and transcription factor, in vitro transcription, chromatin assembly, and replication. The rapid development of Xenopus embryos, following fertilization in vitro, also provides a simple vertebrate system in which the molecular mechanisms responsible for causing the differentiation of the egg into an animal can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davidson EH (1986) Gene activity in early development. Academic Press, Orlando, Florida.

    Google Scholar 

  2. Gilbert SF (1988) Developmental biology. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  3. Spemann H (1938) Embryonic development and induction. Yale University Press, New Haven.

    Google Scholar 

  4. Gurdon JB, Wickens MP (1983) The use of Xenopus oocytes for the expression of cloned genes. Methods Enzymol 101:370–386.

    Article  PubMed  CAS  Google Scholar 

  5. Shastry BS, Honda BM, Roeder RG (1984) Altered levels of a 5S gene-specific transcription factor (TFIIIA) during oogenesis and embryonic development of Xenopus laevis. J Biol Chem259:11373–11382.

    PubMed  CAS  Google Scholar 

  6. Gurdon JB, Melton DA (1981) Gene transfer in amphibian eggs and oocytes. Annu Rev Genet 15:189–218.

    Article  PubMed  CAS  Google Scholar 

  7. De Robertis EM, Lienhard S, Parisot RF (1982) Intracellular transport of microinjected 5S and small nuclear RNAs. Nature 295:572–577.

    Article  PubMed  Google Scholar 

  8. Dingwall C, Laskey RA (1986) Protein import into the cell nucleus. Annu Rev Cell Biol2:367–390.

    Article  PubMed  CAS  Google Scholar 

  9. Fischer U, Lührmann R (1990) An essential signalling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science 249:786–790.

    Article  PubMed  CAS  Google Scholar 

  10. Guddat U, Bakken AH, Pieler T (1990) Protein-mediated nuclear export of RNA: 5S RNA containing small RNPs in Xenopus oocytes. Cell 60:619–628.

    Article  PubMed  CAS  Google Scholar 

  11. Hamm J, Darzynkiewicz E, Tahara S, Mattaj IW (1990) The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell 62:569–577.

    Article  PubMed  CAS  Google Scholar 

  12. Mattaj IW, De Robertis EM (1985) Nuclear segregation of U2 snRNA requires binding of specific RNP proteins. Cell 40:111–118.

    Article  PubMed  CAS  Google Scholar 

  13. Tobian JA, Drinkard L, Zasloff M (1985) tRNA nuclear transport: defining the critical regions of human tRNAi met by point mutagenesis. Cell 43:415–422.

    Article  PubMed  CAS  Google Scholar 

  14. Rebagliati MR, Weeks DL, Harvey RP, Melton DA (1985) Identification and cloning of localized maternal RNAs from Xenopus eggs. Cell 42:769–777.

    Article  PubMed  CAS  Google Scholar 

  15. Yisraeli JK, Melton DA (1988) The maternal mRNA VG1 is correctly localized following injection into Xenopus oocytes. Nature 336:592–595.

    Article  PubMed  CAS  Google Scholar 

  16. Gerhart JC (1980) Mechanisms regulating pattern formation in the amphibian egg and early embryo. In: Goldberger RF (ed) Biological regulation and development, vol 2. Molecular organization and cell function. Plenum Press, New York, pp 133–316.

    Google Scholar 

  17. Dworkin MB, Shrutkowski A, Dworkin-Rastl E (1985) Mobilization of specific maternal RNA species into polysomes after fertilization in Xenopus laevis. Proc Natl Acad Sci USA82:7636–7640.

    Article  PubMed  CAS  Google Scholar 

  18. Fox CA, Sheets MD, Wickens MP (1989) Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by synthetic UUUUUAU. Genes Dev3:2151–2162.

    Article  PubMed  CAS  Google Scholar 

  19. McGrew LL, Dworkin-Rastl E, Dworkin MB, Richter JD (1989) Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev 3:803–815.

    Article  PubMed  CAS  Google Scholar 

  20. Kimelman D, Kirschner M (1987) Synergistic induction of mesoderm by FGF and TGF-β and the identification of a mRNA coding for FGF in the early Xenopus embryo. Cell 51:869–877.

    Article  PubMed  CAS  Google Scholar 

  21. Nieuwkoop PD, Johnen AG, Albers B (1985) The epigenetic nature of early chordate development: inductive interaction and competence. Cambridge University Press, Cambridge.

    Google Scholar 

  22. Rosa F, Roberts AB, Danielpur D, Dart LL, Sporn MB, Dawid JB (1988) Mesoderm induction in amphibians: the role of TGF-β2-like factors. Science 239:783–785.

    Article  PubMed  CAS  Google Scholar 

  23. Slack JMW, Darlington BG, Heath JK, Godsave SF (1987) Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326:197–200.

    Article  PubMed  CAS  Google Scholar 

  24. Smith JC (1989) Mesoderm induction and mesodern inducing factors in early amphibian development. Development 105:665–677.

    PubMed  CAS  Google Scholar 

  25. Smith JC, Price BMJ, Van Nimmen K, Huylebroeck D (1990) Identification of a potent Xenopus mesoderm inducing factor as a homologue of activin A. Nature 345:729–731.

    Article  PubMed  CAS  Google Scholar 

  26. Sokol S, Wong GG, Melton D (1990) A mouse macrophage factor induces head structures and organizes a body axis in Xenopus. Science 249:561–564.

    Article  PubMed  CAS  Google Scholar 

  27. Weeks DL, Melton DA (1987) A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-β Cell 51:861–867.

    Article  PubMed  CAS  Google Scholar 

  28. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.

    Article  PubMed  CAS  Google Scholar 

  29. Hopwood ND, Pluck A, Gurdon JB (1989a) Myo D expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. EMBO J 8:3409–3417.

    PubMed  CAS  Google Scholar 

  30. Hopwood NP, Pluck A, Gurdon JB (1989b) A Xenopus mRNA related to Drosophila twist is expressed in response to induction in the mesoderm and the neural crest. Cell 59:893–903.

    Article  PubMed  CAS  Google Scholar 

  31. Rosa FM (1989) Mix. 1, a homeobox mRNA inducible by mesodern inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos. Cell 57:965–974.

    CAS  Google Scholar 

  32. Sargent TD, Dawid JB (1983) Differential gene expression in the gastrula of Xenopus laevis. Science 222:135–139.

    Article  PubMed  CAS  Google Scholar 

  33. Gurdon JB, Mohun TJ, Sharpe CR, Taylor MV (1989) Embryonic induction and muscle gene activation. TIG 5:51–56.

    Article  PubMed  CAS  Google Scholar 

  34. Mohun TJ, Brennan S, Dathan N, Fairman S, Gurdon JB (1984) Cell type specific activation of actin genes in the early amphibian embryo. Nature 311:716–721.

    Article  PubMed  CAS  Google Scholar 

  35. Taylor M, Treisman R, Garrett N, Mohun T (1989) Musclespecific (CArG) and serum-responsive (SRE) promoter elements are functionally interchangeable in Xenopus embryos and mouse fibroblasts. Development 106:67–78.

    PubMed  CAS  Google Scholar 

  36. Wilson C, Cross GS, Woodland HR (1986) Tissue-specific expression of actin genes injected into Xenopus embryos. Cell 47:589–599.

    Article  PubMed  CAS  Google Scholar 

  37. Holtfreter J (1983) Die totale Exogastrulation, eine Selbstablösung des Ektoderms vom Entomesoderm. Roux’ Arch J Entwicklungsmech 129:669–793.

    Article  Google Scholar 

  38. Mangold O (1933) Über die Induktionsfähigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 21:761–766.

    Article  Google Scholar 

  39. Spemann H, Mangold H (1924) Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Roux’ Arch J Entwicklungsmech 100:599–638.

    Google Scholar 

  40. Durston AJ, Timmermans JPM, Hage WJ, Hendricks HFJ, de Vries NJ, Heideveld M, Hienarkoop PD (1989) Retinoic acid causes and anteroposterior transformation in the developing central nervous system. Nature 340:140–144.

    Article  PubMed  CAS  Google Scholar 

  41. Kintner CR, Melton DA (1987) Expression of Xenopus N-CAM RNA in an early response of ectoderm to induction. Development 99:311–325.

    PubMed  CAS  Google Scholar 

  42. Otte AP, van Run P, Heideveld M, van Driel R, Durston AJ (1989) Neural induction is mediated by cross-talk between the protein kinase C and cyclic AMP pathways. Cell 58:641–648.

    Article  PubMed  CAS  Google Scholar 

  43. Sharpe CR, Fritz A, De Robertis EM, Gurdon JB (1987) A homeobox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction. Cell 50:749–758.

    Article  PubMed  CAS  Google Scholar 

  44. Brown DD, Schlissel MS (1985) A positive transcription factor controls the differential expression of two 5S RNA genes. Cell 42:759–767.

    Article  PubMed  CAS  Google Scholar 

  45. Busby SJ, Reeder RH (1983) Spacer sequences regulate transcription of ribosomal gene plasmids injected into Xenopus embryos. Cell 34:989–996.

    Article  PubMed  CAS  Google Scholar 

  46. Jonas EA, Snape AM, Sargent TD (1989) Transcriptional regulation of a Xenopus embryonic epidermal keratin gene. Development 106:399–405.

    PubMed  CAS  Google Scholar 

  47. Krieg PA, Melton DA (1985) Developmental regulation of a gastrula specific gene injected into fertilized Xenopus eggs. EMBO J 4:3463–3471.

    PubMed  CAS  Google Scholar 

  48. Krieg PA, Melton DA (1987) An enhancer responsible for activating transcription at the midblastula transition in Xenopus development. Proc Natl Acad Sci USA 84:2331–2335.

    Article  PubMed  CAS  Google Scholar 

  49. Bass LB, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55:1089–1098.

    Article  PubMed  CAS  Google Scholar 

  50. Cotten M, Birnstiel ML (1989) Ribozyme-mediated destruction of RNA in vivo. EMBO J8:3861–3866.

    PubMed  CAS  Google Scholar 

  51. Giebelhaus DH, Eib DW, Moon RT (1988) Antisense RNA inhibits expression of membrane skeleton protein 4.1during embryonic development of Xenopus. Cell 53:601–615.

    CAS  Google Scholar 

  52. Harland R, Weintraub H (1985) Translation of mRNA injected into Xenopus oocytes is specifically inhibited by antisense RNA. J Cell Biol 101:1094–1099.

    Article  PubMed  CAS  Google Scholar 

  53. Haseloff J, Gerlach WL (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334:585–591.

    Article  PubMed  CAS  Google Scholar 

  54. Kloc M, Miller M, Carrasco AE, Eastman E, Etkin L (1989) The maternal store of Xlgv7 mRNA in full-grown oocytes is not required for normal development in Xenopus. Development 107:899–907.

    PubMed  CAS  Google Scholar 

  55. Melton DA (1985) Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc Natl Acad Sci USA 82:144–148.

    Article  PubMed  CAS  Google Scholar 

  56. Sagata N, Oskarrsson M, Copeland T, Brumbaugh J, Van de Woude GF (1988) Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335:519–525.

    Article  PubMed  CAS  Google Scholar 

  57. Shuttleworth J, Colman A (1988) antisense oligonucleotidedirected cleavage of mRNA in Xenopus oocytes and eggs. EMBO J 7:427–434.

    PubMed  CAS  Google Scholar 

  58. Wormington MW (1986) Stable repression of ribosomal protein L1 synthesis in Xenopus oocytes by microinjection of antisense RNA. Proc Natl Acad Sci USA 83:8639–8643.

    Article  PubMed  CAS  Google Scholar 

  59. Wright CVE, Cho KWY, Hardwicke J, Collins RH, De Robertis EM (1989) Interference with function of a homeobox gene in Xenopus embryos produces malformations of the anterior spinal cord. Cell 59:81–93.

    Article  PubMed  CAS  Google Scholar 

  60. Andrews MT, Brown DD (1987) Transient activation of oo-cyte 5S RNA genes in Xenopus embryos by raising the level of the trans-acting factor TFIIIA. Cell 51:445–453.

    Article  PubMed  CAS  Google Scholar 

  61. Harvey RP, Melton DA (1988) Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos. Cell 53:687–697.

    Article  PubMed  CAS  Google Scholar 

  62. McMahon AP, Moon RT (1989) Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58:1075–1084.

    Article  PubMed  CAS  Google Scholar 

  63. Ruiz i Altaba A, Melton DA (1989a) Involvement of the Xenopus homeobox gene Xhox3 in pattern formation along the anterior-posterior axis. Cell 57:317–326.

    Article  PubMed  CAS  Google Scholar 

  64. Ruiz i Altaba A, Melton DA (1989b) Interaction between peptide growth factors and homeobox genes in the establishment of antero-posterior polarity in frog embryos. Nature 341:33–38.

    Article  PubMed  CAS  Google Scholar 

  65. Köster M, Pieler T, Pöting A, Knöchel W (1988) The finger motif defines a multigene family represented in the maternal mRNA of Xenopus laevis oocytes. EMBO J 7:1735–1741.

    PubMed  Google Scholar 

  66. Knöchel W, Pöting A, Köster M, El-Baradi T, Nietfeld W, Bouwmeester T, Pieler T (1989) Evolutionary conserved modules associated with Zn fingers in Xenopus laevis. Proc Natl Acad Sci USA 86:6097–6100.

    Article  PubMed  Google Scholar 

  67. Miller J, McLachlan AD, Klug A (1985) Repetitive Zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614.

    PubMed  CAS  Google Scholar 

  68. Nietfeld W, El-Baradi T, Mentzel H, Pieler T, Köster M, Pöting A, Knöchel W (1989) Second order repeats in Xenopus laevis finger proteins. J Mol Biol 208:639–659.

    Article  PubMed  CAS  Google Scholar 

  69. Ruiz I Altaba A, Perry-O’Keefe H, Melton DA (1987) Xfin: an embryonic gene encoding a multifingered protein in Xenopus. EMBO J 6:3065–3070.

    Google Scholar 

  70. Wright CVE, Cho KWY, Oliver G, De Robertis EM (1989) Vertebrate homeodomain proteins: families of region-specific transcription facotrs. TIBS 14:52–56.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolffe, A.P. (1992). The Developmental Regulation of the Genes Coding for 5S Ribosomal RNA in Xenopus laevis . In: Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77043-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77043-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77045-6

  • Online ISBN: 978-3-642-77043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics