Advertisement

Development pp 308-327 | Cite as

Genetic and Molecular Analysis of Early Pattern Formation in Drosophila

  • Diethard Tautz

Abstract

Drosophila is a small dipteran fly and belongs to the group of holometabolous insects (Fig. 1). Both the larvae and the adult flies live on rotting fruit, and feed mainly on the fungi and bacteria which grow on these fruit. It probably had its evolutionary origins in tropical Africa, but a large number of different species can now be found throughout the world. D. melanogaster was introduced into the genetic laboratory by T.H. Morgan around 1910, mainly because it was easy to grow (generation time two weeks with about 300 offspring per female) and because it showed a wealth of morphological markers, which could be used for genetic experiments. D. melanogaster quickly became one of the genetically best analyzed organisms. Morgan received the Nobel prize for medicine in 1933 for describing the principles of genetic recombination and for the discovery of the chromosomal sex determination. One of his coworkers, H. J. Muller, received the Nobel prize in 1946 for the discovery and the description of the mutagenicity of X-rays. This international recognition has boosted Drosophila research and Drosophila has since been continuously used for the analysis of a variety of basic biological questions, ranging from biochemistry over behavioral genetics to evolution. The exchange of information and stocks among the Drosophila researchers has traditionally been very good and provides us nowadays with an exceptionally wellfounded genetic system. The degree of sophistication of the genetic experiments that can be done with Drosophila is unparalleled and this is the real strength of the system.

Keywords

Follicle Cell Nurse Cell Drosophila Embryo Germ Band Zygotic Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  1. Akam M (1987) The molecular basis for metameric pattern in the Drosophila embryo. Development 101:1–22.PubMedGoogle Scholar
  2. Ashburner M (1989) Drosophila — a laboratory handbook. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  3. Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York.Google Scholar
  4. Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335:25–34.PubMedCrossRefGoogle Scholar
  5. Roberts DB (1986) Drosophila — a practical approach. IRL Press, Oxford.Google Scholar
  6. 1.
    Anderson KV, Nüsslein-Volhard C (1984) Information for the dorsal-ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 311:223–227.PubMedCrossRefGoogle Scholar
  7. Asburner M, Berendes HD (1978) Puffing of polytene chromosomes. In: Asburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2 b. Academic Press, London, pp 315–395.Google Scholar
  8. Pirotta VH, Jäckie H, Edström JE (1983) Microcloning of microdissected chromosome fragments. In: Hollaender A, Setlow JK (eds) Genetic engineering: principles and methods, vol 5. Plenum Press, New York, pp 1–15.Google Scholar
  9. Poulson DF (1950) In: Demerec M (ed) The biology of Drosophila. Wiley, New York, pp 168–274.Google Scholar
  10. Rosenberg UB, Preiss A, Seifert E, Jäckie H, Knipple DC (1985) Production of phenocopies by Krüppel antisense RNA injected into Drosophila embryos. Nature313:703–706.PubMedCrossRefGoogle Scholar
  11. Spradling AC, Rubin GM (1982) Transposition of cloned P-elements into the Drosophila germ line chromosomes. Science 218:341–347.PubMedCrossRefGoogle Scholar
  12. 2.
    Manseau LJ, Schüpbach T (1989) The egg came first, of course! Anterior-posterior pattern formation in Drosophila embryogenesis and oogenesis. Trends Genet 5:400–405.PubMedCrossRefGoogle Scholar
  13. Martinez-Arias A, Lawrence PA (1985) Parasegments and compartments in the Drosophila embryo. Nature 313:639–642.PubMedCrossRefGoogle Scholar
  14. 3.
    Lohs-Schardin M, Cremer C, Nüsslein-Volhard C (1979) A fate map for the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev Biol 73:239–255.PubMedCrossRefGoogle Scholar
  15. Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238.CrossRefGoogle Scholar
  16. 4.
    Jürgens G, Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster II. Zygotic loci on the third chromosome. Roux’s Arch Dev Biol 193:283–295.Google Scholar
  17. Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster I. Zygotic loci on the second chromosome. Wilhelm Roux’s Arch Dev Biol 193:267–282.CrossRefGoogle Scholar
  18. Wieschaus E, Nüsslein-Volhard C, Jürgens G (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster III. Zygotic loci on the X-chromosome and the fourth chromosome. Roux’s Arch Dev Biol 193:296–307.Google Scholar
  19. 5.
    Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature276:565–570.PubMedCrossRefGoogle Scholar
  20. Nüsslein-Volhard C, Frohnhöfer HG, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238:1675–1681.PubMedCrossRefGoogle Scholar
  21. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801.PubMedCrossRefGoogle Scholar
  22. 6.
    Driever W, Nüsslein-Volhard C (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93.PubMedCrossRefGoogle Scholar
  23. Driever W, Nüsslein-Volhard C (1988) The bicoid protein determines position in the Drosophila embryo in a concentration dependent manner. Cell 54:95–104.PubMedCrossRefGoogle Scholar
  24. Driever W, Ma J, Nüsslein-Volhard C, Ptashne M (1989) Rescue of bicoid mutant Drosophila embryos by bicoid fusion proteins containing heterologous activating sequences. Nature 342:149–154.PubMedCrossRefGoogle Scholar
  25. Frohnhöfer HG, Nüsslein-Volhard C (1986) Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324:120–125.CrossRefGoogle Scholar
  26. St Johnston D, Driever W, Berleth T, Richstein S, Nüsslein-Volhard C (1989) Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development 107:13–19 (Suppl).PubMedGoogle Scholar
  27. Struhl G, Struhl K, Macdonald P (1989) The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57:1259–1273.PubMedCrossRefGoogle Scholar
  28. 7.
    Ephrussi A, Dickinson LK, Lehmann R (1991) oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66:37–50.PubMedCrossRefGoogle Scholar
  29. Hay B, Jan LY, Jan YN (1990) Localization of vasa, a component of Drosophila polar granules, in maternal-effect mutants that alter embryonic anteroposterior polarity. Development109:425–433.PubMedGoogle Scholar
  30. Hülskamp M, Schröder C, Pfeifle C, Jäckie H, Tautz D (1989) Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature 338:629–632.PubMedCrossRefGoogle Scholar
  31. Lehmann R, Nüsslein-Volhard C (1987) Involvement of the pumilio gene in the transport of an abdominal signal in the Drosophila embryo. Nature 329:167–170.CrossRefGoogle Scholar
  32. Wang C, Lehmann R (1991) nanos is the localized posterior determinant in Drosophila. Cell 66:637–648.PubMedCrossRefGoogle Scholar
  33. Wharton RP, Struhl G (1989) Structure of the Drosophila Bicaudal D protein and its role in localizing the posterior determinant nanos. Cell 59:881–892.PubMedCrossRefGoogle Scholar
  34. Wharton RP, Struhl G (1991) RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 67:955–967.PubMedCrossRefGoogle Scholar
  35. 8.
    Casanova J, Struhl G (1989) Localized surface activity of torso, a receptor tyrosine kinase, specifies terminal body pattern in Drosophila. Genes Dev 3:2025–2038.PubMedCrossRefGoogle Scholar
  36. Klingler M, Erdélyi M, Szabad J, Nüsslein-Volhard C (1988) Function of torso in determining the terminal anlagen of the Drosophila embryo. Nature 335:275–277.PubMedCrossRefGoogle Scholar
  37. Schüpbach T, Wieschaus E (1986) Maternal effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux’s Arch Dev Biol 195:302–317.CrossRefGoogle Scholar
  38. Stevens LM, Frohnhöfer HG, Klingler M, Nüsslein-Volhard C (1990) Localized requirement for torso-like expression in follicle cells for development of terminal anlagen of the Drosophila embryo. Nature 346:660–663.PubMedCrossRefGoogle Scholar
  39. 9.
    Macdonald PM, Struhl G (1986) A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324:537–545.PubMedCrossRefGoogle Scholar
  40. Perrimon N, Engstrom L, Mahowald AP (1989) Zygotic lethals with specific maternal effect phenotypes in Drosophila melanogaster. I. Loci on the X-chromosome. Genetics 121:333–352.PubMedGoogle Scholar
  41. 10.
    Hülskamp M, Tautz D (1991) Gap genes and gradients — the logic behind the gaps. BioEssays 13:261–268.PubMedCrossRefGoogle Scholar
  42. Hülskamp M, Pfeifle C, Tautz D (1990) A morphogenetic gradient of hunchback organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo. Nature 346:577–580.PubMedCrossRefGoogle Scholar
  43. 11.
    Caroll SB (1990) Zebra patterns in fly embryos: activation of stripes or repression of interstripes? Cell 60:9–16.CrossRefGoogle Scholar
  44. Gehring WJ (1985) Homeotic genes, the homeobox and the genetic control of development. CSHSQB 50:243–251.Google Scholar
  45. Hiromi Y, Kuroiwa A, Gehring WJ (1985) Control elements of the Drosophila segmentation gene fushi tarazu. Cell 43:603–613.PubMedCrossRefGoogle Scholar
  46. Pankratz M, Seifert E, Gerwin N, Billi B, Nauber U, Jäckie H (1990) Gradients of Krüppel and knirps gene products direct pair-rule stripe patterning in the posterior region of the Drosophila embryo. Cell 61:309–317.PubMedCrossRefGoogle Scholar
  47. 12.
    Martinez-Arias A, Baker NE, Ingham PW (1988) Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103:157–170.Google Scholar
  48. Nakano Y, Guerrero I, Hidalgo A, Taylor A, Whittle JRS, Ingham PW (1989) A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature 341:508–513.PubMedCrossRefGoogle Scholar
  49. van den Heuvel M, Nusse R, Johston P, Lawrence PA (1989) Distribution of the wingless gene product in Drosophila embryos: a protein involved in cell-cell communication. Cell59:739–749.PubMedCrossRefGoogle Scholar
  50. 13.
    Anderson KV (1987) Dorsal-ventral embryonic pattern genes of Drosophila. Trends Genet 3:91–97.CrossRefGoogle Scholar
  51. Hashimoto C, Hudson KL, Anderson KV (1988) The toll gene of Drosophila, required for dorsal-vental embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279.PubMedCrossRefGoogle Scholar
  52. Roth S, Stein D, Nüsslein-Volhard C (1989) A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59:1189–1202.PubMedCrossRefGoogle Scholar
  53. Stein D, Roth S, Vogelsang E, Nüsslein-Volhard C (1991) The polarity of the dorsoventral axis in the Drosophila embryo is defined by an extracellular signal. Cell65:725–735.PubMedCrossRefGoogle Scholar
  54. 14.
    Grossniklaus U, Bellen HJ, Wilson C, Gehring WJ (1989) P-element-mediated enhancer detection applied to the study of oogenesis in Drosophila. Development 107:189–200.PubMedGoogle Scholar
  55. O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84:9123–9127.PubMedCrossRefGoogle Scholar
  56. Tautz D (1992) Redundancies, development and the flow of information. BioEssays (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Diethard Tautz

There are no affiliations available

Personalised recommendations