Skip to main content

Exploitation of Agrobacterium tumefaciens

  • Chapter
Development
  • 219 Accesses

Abstract

During invasion of wounded plants, soil agrobacteria transfer a defined segment of their Ti and Ri plasmids into the plants. The transferred DNA, termed T-DNA, is integrated into the plant nuclear genome. Genes encoded by Ti and Ri plasmid T-DNAs are expressed in plants and confer the synthesis of plant growth factors as well as sugar and amino acid derivatives, called opines. Expression of T-DNA genes iaaM,iaaH, and ipt (see Hohn, Chap. 15, this Vol.) leads to production of phytohormones, auxin and cytokinin that induce proliferation of transformed cells to form undifferentiated tumors, crown galls. In contrast, cells transformed by rol A, B and C genes of Ri plasmid T-DNAs differentiate to hairy roots. While genetic analysis of the function and expression of these T-DNA genes provided a key for better understanding of various aspects of hormonal regulation and cell differentiation, studies of the T-DNA transfer and integration contributed directly to the development of T-DNA-based transformation vectors and transgenic plant technology. How T-DNA gene vectors are exploited to gain more insight to molecular biology of plants is the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zambryski P (1988) Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu Rev Genet 22:1–30.

    Article  PubMed  CAS  Google Scholar 

  2. Zambryski P, Tempe J, Schell J (1989) Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56:193–201.

    Article  PubMed  CAS  Google Scholar 

  3. Klee HJ, Horsch R, Rogers S (1987) Agrobacterium-mediated plant transformation and its further applications to plant molecular biology. Annu Rev Genet 20:467–486.

    Google Scholar 

  4. Weising K, Schell J, Kahl G (1988) Foreign genes in plants: transfer, structure and expression. Annu Rev Genet 22:421–477.

    Article  PubMed  CAS  Google Scholar 

  5. Fraley RT, Rogers SG, Horsch RB, Eichholtz DA, Flick CA, Hoffman NL, Saunders PR (1985) The SEV system: A new disarmed Ti plasmid vector system for plant transformation. Bio/Technology3:629–635.

    Article  CAS  Google Scholar 

  6. Koncz C, Kreuzaler F, Kaiman ZS, Schell J (1984) A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and α-actin in plant tumours. EMBO J 3:1029–1037.

    PubMed  CAS  Google Scholar 

  7. Stougaard J, Abildstein D, Macker KA (1987) The Agrobacterium rhizogenes pRi TL segment as a gene vector system for the transformation of plants. Mol Gen Genet 207:251–255.

    Article  CAS  Google Scholar 

  8. Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2154.

    PubMed  CAS  Google Scholar 

  9. An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vectors for transformation of higher plants. EMBO J 4:277–284.

    PubMed  CAS  Google Scholar 

  10. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res12:8711–8721.

    Article  PubMed  CAS  Google Scholar 

  11. Hoekema A, Hirsch PR, Hooykaas PJ, Schilperoort RA (1983) A binary plant vector strategy based on the separation of the vir and T-region of agrobacteria. Nature 303:179–181.

    Article  CAS  Google Scholar 

  12. Klee HJ, Yanofsky MF, Nester EW (1985) Vectors for transformation of higher plants. Bio/Technology 3:637–642.

    Article  CAS  Google Scholar 

  13. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396.

    Article  CAS  Google Scholar 

  14. Schell J, Vasil IK (1989) Cell culture and somatic cell genetics of plants, molecular biology of plant nuclear genes. Academic Press, New York.

    Google Scholar 

  15. Waiden R, Koncz C, Schell J (1990) The use of gene vectors in plant molecular biology. Methods Mol Cell Biol 1:175–194.

    Google Scholar 

  16. Kuhlemeier C, Green PJ, Chua N-H (1987) Regulation of gene expression in higher plants. Annu Rev Plant Physiol 38:222–257.

    Article  Google Scholar 

  17. Schell J (1987) Transgenic plants as a tool to study the molecular organization of plant genes. Science 237:1176–1183.

    Article  Google Scholar 

  18. Benfey DN, Chua N-H (1989) Regulated genes in transgenic plants. Science 244:174–181.

    Article  PubMed  CAS  Google Scholar 

  19. Feldmann KA, Marks MD, Christianson ML, Quatrano RS (1989) A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243:1351–1354.

    Article  PubMed  CAS  Google Scholar 

  20. Koncz C, Martini N, Mayerhofer R, Koncz-Kalman ZS, Körber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471.

    Article  PubMed  CAS  Google Scholar 

  21. Koncz C, Mayerhofer R, Koncz-Kalman ZS, Nawrath C, Reiss B, Redei GP, Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidoposis thaliana. EMBO J 9:1337–1346.

    PubMed  CAS  Google Scholar 

  22. Meyerowitz EM (1987) Arabidopsis thaliana. Annu Rev Genet 21:93–111.

    Article  PubMed  CAS  Google Scholar 

  23. Redei GP (1975) Arabidopsis as a genetic tool. Annu Rev Genet 9:11–127.

    Article  Google Scholar 

  24. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koncz, C., Schell, J. (1992). Exploitation of Agrobacterium tumefaciens . In: Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77043-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77043-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77045-6

  • Online ISBN: 978-3-642-77043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics