Skip to main content

Introductory Remarks. The Initiation of Eukaryotic DNA Replication and Its Control

  • Conference paper
DNA Replication and the Cell Cycle

Part of the book series: Colloquium der Gesellschaft für Biologische Chemie ((MOSBACH,volume 43))

  • 95 Accesses

Abstract

Interactions of peptide growth factors with their receptors on the cell surface induce quiescent mammalian cells to enter the cell cycle. The signals received are transmitted to their intracellular targets mainly by a series of phosphorylation events with p34cdc2 and related protein kinases as primary participants as well as cyclin proteins that regulate the activity of the kinases (see E. Nigg and coworkers, this Vol., p 147). But other enzyme systems may also participate in signal transmission as, for example components of the ubiquitin-dependent protein degradation pathway (see S. Jentsch et al., this Vol., p. 177).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews BJ (1992) Dialogue with the cell cycle. Nature 355:393–394

    Article  PubMed  CAS  Google Scholar 

  • Bell SP & Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134

    Article  PubMed  CAS  Google Scholar 

  • Bow JJ & Laskey RA (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47:577–587

    Article  Google Scholar 

  • Borowiec JA & Hurwitz J (1988) Localized melting and structural changes in the SV40 origin of replication induced by T antigen. EMBO J 7:3149–3158

    PubMed  CAS  Google Scholar 

  • Bramhill D & Romberg A (1988) A model for initiation at origins of DNA replication. Cell 54:915–918

    Article  PubMed  CAS  Google Scholar 

  • Burhans WC, Vassilev LT, Caddie MS, Heintz NH & DePamphilis ML (1990) Identification of an origin of bidirectional DNA replication in mammalian chromosomes. Cell 62:955–965

    Article  PubMed  CAS  Google Scholar 

  • Cook PR (1991) The nucleoskeleton and the topology of replication. Cell 66:627–635

    Article  PubMed  CAS  Google Scholar 

  • Cox LS & Laskey RA (1991) DNA replication occurs at discrete sites in the pseudonuclei assembled from purified DNA. Cell 66:271–275

    Article  PubMed  CAS  Google Scholar 

  • Crevel G & Cotterill S (1991) DNA replication in cell-free extracts from Drosophila melano- gaster. EMBO J 10:4361–4369

    PubMed  CAS  Google Scholar 

  • Fanning E & Knippers R (1992) Structure and function of simian virus 40 large T antigen. Ann Rev Biochem 61:55–85

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM (1991) Replication origins, factors and attachment sites. CUIT Opinion Cell Biol 3:407–413

    Article  CAS  Google Scholar 

  • Gille H, Egan JB, Roth A & Messer W (1990) The FIS protein binds and bends the origin of _ chromosomal DNA replication, ori C, of Escherichia coli. Nucl Acids Res 19:4167–4172

    Article  Google Scholar 

  • Gille H & Messer W (1991) Localized DNA melting and structural perturbations in the origin of replication, Ori C, of Escherichia coli in vitro and in vivo. EMBO J 10:1579–1584

    PubMed  CAS  Google Scholar 

  • Hamel PA, Gallie BL & Phillips RA (1992) The retinoblastoma protein and the cell cycle. Trends Genet 8:180–185

    PubMed  CAS  Google Scholar 

  • Hamlin IL, Vaughn JP, Dijkwel PA, Leu TH & Ma C (1991) Origins of replication: timing and chromosomal position. Curr Opinion Cell Biol 3:414–421

    Article  PubMed  CAS  Google Scholar 

  • Heinzel SS, Krysan PJ, Tran CT & Calos MP (1991) Autonomous DNA replication in human cells is affected by the size and the source of the DNA. Mol Cell Biol 11:2263–2272

    PubMed  CAS  Google Scholar 

  • Herschman HR (1991) Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60:281–319

    Article  PubMed  CAS  Google Scholar 

  • Huberman JA & Riggs AD (1968) On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol 32:327–341

    Article  PubMed  CAS  Google Scholar 

  • Komberg A & Baker JA (1992) DNA replication. 2nd edn. WH Freeman, New York

    Google Scholar 

  • Krysan PJ & Calos MP (1991) Replication initiates at multiple locations on an autonomously replicating plasmid in human cells. Mol Cell Biol 11:1464–1472

    PubMed  CAS  Google Scholar 

  • Marahrens Y & Stillman B (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–823

    Article  PubMed  CAS  Google Scholar 

  • Maundrell K, Hutchinson A & Shall S (1988) Sequence analysis of ARS elements in fission yeast. EMBO J 7:2203–2209

    PubMed  CAS  Google Scholar 

  • Newport J (1987) Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell 48:205–217

    Article  PubMed  CAS  Google Scholar 

  • Proud CG (1992) Protein phosphorylation in translational control. CUIT Top Cell Regul 32:243–369

    CAS  Google Scholar 

  • Skarstad K, Baker TA & Komberg A (1990) Strand separation required for the initiation of replication at the chromosomal origin of E. coli is facilitated by a distant RNA-DNA hybrid. EMBO J 9:2341–2348

    CAS  Google Scholar 

  • Taljanidisz J, Popowski J & Sarkar N (1989) Temporal order of gene replication in Chinese hamster ovary cells. Mol Cell Biol 9:2881–2889

    PubMed  CAS  Google Scholar 

  • Umek RM & Kowalski D (1988) The ease of DNA unwinding as a determinant of initiation of yeast replication origins. Cell 52:559–567

    Article  PubMed  CAS  Google Scholar 

  • Von Meyenburg K & Hansen FG (1987) Regulation of chromosome replication. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. Am Soc Microbiol, Washington, DC, pp 1555–1577

    Google Scholar 

  • Wessel R, Schweizer J & Stahl H (1992) Simian virus 40 T-antigen helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replication. J Virol 66:804–815

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knippers, R., Ruff, J. (1993). Introductory Remarks. The Initiation of Eukaryotic DNA Replication and Its Control. In: Fanning, E., Knippers, R., Winnacker, EL. (eds) DNA Replication and the Cell Cycle. Colloquium der Gesellschaft für Biologische Chemie, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77040-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77040-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77042-5

  • Online ISBN: 978-3-642-77040-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics