Pathophysiologie — Kontraktile Proteine

  • H. Katus
Part of the Aktuelle Therapieprinzipien in Kardiologie und Angiologie book series (THERAPIEPRINZ.)

Zusammenfassung

Eine vermehrte hämodynamisehe Belastung kompensiert das Herz auf zellulärer Ebene durch eine Größenzunahme der Myozyten und entsprechende Massenzunahme intrazellulärer Moleküle (Vliegen et al. 1987; Campbell et al. 1989). Diese myokardiale Hypertrophie ist jedoch kein uniform ablaufender Prozeß. Statt dessen wird die quantitative und qualitative Änderung intrakardialer Moleküle bei der Herzhypertrophie von einer Fülle von exogenen und endogenen Faktoren beeinflußt. So hängt das Ausmaß der Hypertrophie von der untersuchten Spezies (Rouleau et al. 1989), der intrakardialen Lokalisation der hypertrophierenden Myozyten (Vescovo et al. 1989) und der Art der Belastung ab (Moalic et al. 1981). Aber nicht nur das Ausmaß, sondern auch die Qualität der Hypertrophie ist je nach Spezies und Ursache der Hypertrophie verschieden (Moalic et al. 1981; Hamrell u. Low 1978). Daraus resultiert ein für die jeweilige Spezies sowie für die Art und das Ausmaß der Hypertrophie spezifische Isoformzusammensetzung kardialer Moleküle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson AW, Oakeley A (1989) Immunological identification of five troponin T isoforms reveals an elaborate maturational troponin T profile in rabbit myocardium. Circ Res 65:1087–1093PubMedGoogle Scholar
  2. Anderson AW, Moore GE, Nassar RN (1988) Developmental changes in the expression of rabbit left ventricular troponin T. Circ Res 63:742–747PubMedGoogle Scholar
  3. Anderson PAW, Oakeley AE, Allen PD (1988) Human troponin T expression in normal and in end-stage failure hearts. Circulation 80:11–503 (abstr)Google Scholar
  4. Arndt H, Bletz C, Katus HA, Mall G, Rüegg C (1989) Calcium sensitivity and unloaded shortening velocity of hypertrophied and non-hypertrophied skinned atrial fibres. Pflügers Arch 415:209–213PubMedCrossRefGoogle Scholar
  5. Bishopric NH, Simpson PC, Ordahl CP (1987) Induction of the skeletal a-actin gene in ar adrenoceptor-mediated hypertrophic of rat cardiac myocytes. J Clin Invest 80:1194–1199PubMedCrossRefGoogle Scholar
  6. Bortone AS, Hess OM, Chiddo A, Gaglione A, Locuratolo N, Caruso G. Rizzon P (1989) Functional and structural abnormalities in patients with dilated cardiomyopathy. J Am Coll Cardiol 14:613–623PubMedCrossRefGoogle Scholar
  7. Bouvagnet P, Leger J, Pons F, Dechesne C, Leger JJ (1984) Fiber types and myosin types in human atrial and ventricular myocardium. Circ Res 55:794–804PubMedGoogle Scholar
  8. Bouvagnet P, Neveu S, Montoya M, Leger JJ (1987) Developmental changes in the human cardiac isomyosin distribution: an immunohistochemical study using monoclonal antibodes. Circ Res 61: 329–336PubMedGoogle Scholar
  9. Bouvagnet P, Mairhofer H, Leger JOC, Puech P, Leger JJ (1989) Distribution pattern of a and ß myosin in normal and diseased human ventricular myocardium. Basic Res Cardiol 84:91–102PubMedCrossRefGoogle Scholar
  10. Campbell SE, Rakusan K, Gerdes AM (1989) Change in cardiac myocyte size distribution in aortic-constricted neonatal rats. Basic Res Cardiol 84:247–258PubMedCrossRefGoogle Scholar
  11. Chizzonite RA, Everett AW, Prior G et al. (1984) Comparison of myosin heavy chains in atria and ventricules from hyperthyroid, hypothyroid, and euthyroid rabbits. J Biol Chem 259:15564–15571PubMedGoogle Scholar
  12. Cummins P (1982) Transitions in human atrial and ventricular myosin light chain isoenzymes in response to cardiac-pressure-overload-induced hypertrophy. Biochem J 205:195–204PubMedGoogle Scholar
  13. Ebrecht G, Rupp H (1982) Alterations of mechanical parameters in chemically skinned preparations of rat myocardium as a function of isoenzyme pattern of myosin. Basic Res Cardiol 77:220–234PubMedCrossRefGoogle Scholar
  14. Gahlmann R, Troutt AB, Wade RP, Gunning P, Kedes L (1987) Alternative splicing generates variants in important functional domains of human slow skeltal troponin T. J Biol Chem 262:16122–16126PubMedGoogle Scholar
  15. Gahlmann R, Wade R, Gunning P, Kedes L (1988) Differential expression of slow and fast skeletal muscle troponin C. Slow skeletal muscle troponin C is expressed in human fibroblasts. J Mol Biol 201:379–391CrossRefGoogle Scholar
  16. Gunning P, Ponte P, Blau H, Kedes L (1983) Alpha-skeletal and alpha-cardiac actin genes are co-expressed in adult human skeletal muscle and heart. Mol Cell Biol 3:1985–1995PubMedGoogle Scholar
  17. Hamrell BB, Low RB (1978) The relationship of mechanical Vmax to myosin ATPase activity and rabbit and marmot ventricular muscle. Pflügers Arch 377:119–124PubMedCrossRefGoogle Scholar
  18. Hirzel HO, Tuchschmid CR, Schneider J, Krayenbuehl HP, Schaub MC (1985) Relationship between myosin isoenzyme composition, hemodynamics, and myocardial structure in various forms of human cardiac hypertrophy. Cir Res 57:729–740Google Scholar
  19. Höh J FY, McGrath PA, Hale PT (1982) Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 10:1053–1076CrossRefGoogle Scholar
  20. Höh JFY, Yeoh GPS, Thomas MAW, Higginbottom L (1982) Structural differences in heavy chains of rat ventricular myosin isoenzymes. FEBS Lett 97:330–334CrossRefGoogle Scholar
  21. Jalil JE, Doering CW, Janicki JS, Pick R, Clark WA, Abrahams C, Weber KT (1988) Structural vs. contractile protein remodeling and myocardial stiffness in hypertrophied rat left ventricle. J Mol Cell Cardiol 20:1179–1187CrossRefGoogle Scholar
  22. Kamm KE, Stull JT (1985) The function of myosin and myosin light chain kinase phophorylation in smooth muscle. Ann Rev Pharmacol Toxicol 25:593–620CrossRefGoogle Scholar
  23. Kissling G, Rupp H, Malloy L, Jacob R (1982) Alterations in cardiac oxygen consumption under chronic pressure overload. Significance of the isoenzyme pattern of myosin. Basic Res Cardiol 77:255–270PubMedCrossRefGoogle Scholar
  24. MacLeod AR, Gooding C (1988) Human hTM alpha gene: expression in muscle and nonmuscle tissue. Mol Cell Biol 81:433–440Google Scholar
  25. Mercadier JJ, Bouveret P, Gorza L et al. (1983) Myosin isoenzymes in normal and hypertrophied human ventricular myocardum. Circ Res 53:52–62PubMedGoogle Scholar
  26. Mercadier JJ, De La Bastie D, Menasch P, Cao A van, Bouveret P, Lorente P (1987) Alphamyosin heavy chain isoform and atrial size in patients with various types of mitral valve dysfunction: a quantitative study. J Am Coll Cardiol 9:1024–1030PubMedCrossRefGoogle Scholar
  27. Moalic JM, Bercovici J, Swynghedauw B (1981) Proteins synthesis during systolic and diastolic cardiac overloading in rats: a comparative study. Cardiovasc Res 15:515–521PubMedCrossRefGoogle Scholar
  28. Morano I, Lengsfeld M, Ganten U, Ganten D, Rüegg JC (1988) Chronic hypertension changes myosin isoenzyme pattern and decreases myosin phosphorylation in the rat heart. J Mol Cell Cardiol 20:875–886CrossRefGoogle Scholar
  29. Morano I, Arndt H, Gärtner C, Rüegg JC (1988) Skinned fibres of human atrium and ventricle: myosin isoenzymes and contractility. Circ Res 62:632–639PubMedGoogle Scholar
  30. Morano I, Wankerl M, Böhm M, Erdmann E, Rüegg JC (1989) Myosin P-light chain isoenzymes in the human heart: evidence for diphosphorylation of the atrial P-LC form. Basic Res Cardiol 84:298–305PubMedCrossRefGoogle Scholar
  31. Pagani ED, Alousi AA, Grant AM, Older TM, Dziuban SW, Allen PD (1988) Changes in myofibrillar content and Mg-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ Res 63:380–385PubMedGoogle Scholar
  32. Rouleau JL, Juneau C, Stephens H, Shenasa H, Parmley WW, Brutsaert DL (1989) Mechanical properties of papillary muscle in cardiac failure: importance of pathogenesis and of ventricle of origin. J Mol Cell Cardiol 21:817–828CrossRefGoogle Scholar
  33. Rupp H (1982) Polymorphic myosin as the common determinant of myofibrillar ATPase in different hemodynamic and thyrod states. Basic Res Cardiol 77:34–46PubMedCrossRefGoogle Scholar
  34. Schier JJ, Adelstein RS (1982) Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults and patients with hypertrophic cardiomyopathy. J Clin Invest 69:816–825PubMedCrossRefGoogle Scholar
  35. Schwartz K, Lompre A, Bouverett P, Wisnewsky C, Whalen RG (1982) Comparisons of rat cardiac myosins at fetal stages in young animals and in hypothyroid adults. J Biol Chem 257:14412–14418PubMedGoogle Scholar
  36. Simpson PC, Long CS, Waspe LE, Henrich CJ, Ordahl CP (1989) Transcription of early developmental isogenes in cardiac myocyte hypertrophy. J Mol Cell Cardiol [Suppl V] 21:79–89CrossRefGoogle Scholar
  37. Smith HS, Nuttall A (1985) Experimental methods of heart failure. Cardiovasc Res 19:181–186PubMedCrossRefGoogle Scholar
  38. Spann JF, Buccino RA, Sonnenblick EH, Braunwald E (1967) Contractile state of cardiac muscle* obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ Res 21:341–350PubMedGoogle Scholar
  39. Spann JF, Corell JW, Eckberg DL, Sonnenblick EH, Ross J, Braunwald E (1972) Contractile performance of the hypertrophied and chronically failing cat ventricle. Am J Physiol 233:1150–1161Google Scholar
  40. Sweeney LJ, Zak R, Manasek FJ (1987) Transitions in cardiac isomyosin expression during differentiation of the embryonic chick heart. Circ Res 61:287–295PubMedGoogle Scholar
  41. Tobacman LS, Lee R (1987) Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem 262:4059–4064PubMedGoogle Scholar
  42. Tobacman LS (1988) Structure-function studies of the aminoterminal region of bovine cardiac troponin T. J Biol Chem 263:2668–2672PubMedGoogle Scholar
  43. Tsuchimochi H, Kuro-O M, Koyama H et al. (1988) Heterogeneity of (3-type myosin isoenzymes in the human heart and regulational mechanisms in their expression. J Clin Invest 81:110–118PubMedCrossRefGoogle Scholar
  44. Vescovo G, Harding SE, Jones M, Libera LD, Pessina AC, Poole-Wilson PA (1989) Contractile abnormalities of single right ventricular myocytes isolated from rats with right ventricular hypertrophy. J Mol Cell Cardiol [Suppl V] 21:103–111CrossRefGoogle Scholar
  45. Vliegen HW, Laarse A van der, Huysman JAN, Wijnvoord EC, Mentar M, Coraelisse CJ, Eulderink F (1987) Morphometric quantification of myocyte dimensions validated in normal growing rat hearts and applied to hypertrophic human hearts. Cardiovasc Res 21:352–357PubMedCrossRefGoogle Scholar
  46. Whalen RG, Sell SM, Butler-Browne GS (1981) Three myosin heavy-chain isoenzymes appear sequentially in rat muscle development. Nature 292:805–809PubMedCrossRefGoogle Scholar
  47. Wilkinson JM, Grand RJA (1978) Comparison of amino acid sequence of troponin I from different striated muscles. Nature 271:31–35PubMedCrossRefGoogle Scholar
  48. Wisenbaugh T, Allen P, Cooper IV G, Holzgrefe H, Beller G, Carabello B (1983) Contractile function, myosin ATPase activity and isoenzymes in the hypertrophied pg left ventricle after a chronic progressive pressure overload. Circ Res 53:332–341PubMedGoogle Scholar
  49. Yazaki Y, Tsuchimochi H, Kurabayashi M, Komuro I (1989) Molecular adaption to pressure overload in human and rat hearts. J Mol Cell Cardiol [Suppl V] 21:91–101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H. Katus

There are no affiliations available

Personalised recommendations