Skip to main content

Pathophysiologie — Kontraktile Proteine

  • Chapter
Herzinsuffizienz

Part of the book series: Aktuelle Therapieprinzipien in Kardiologie und Angiologie ((THERAPIEPRINZ.))

  • 37 Accesses

Zusammenfassung

Eine vermehrte hämodynamisehe Belastung kompensiert das Herz auf zellulärer Ebene durch eine Größenzunahme der Myozyten und entsprechende Massenzunahme intrazellulärer Moleküle (Vliegen et al. 1987; Campbell et al. 1989). Diese myokardiale Hypertrophie ist jedoch kein uniform ablaufender Prozeß. Statt dessen wird die quantitative und qualitative Änderung intrakardialer Moleküle bei der Herzhypertrophie von einer Fülle von exogenen und endogenen Faktoren beeinflußt. So hängt das Ausmaß der Hypertrophie von der untersuchten Spezies (Rouleau et al. 1989), der intrakardialen Lokalisation der hypertrophierenden Myozyten (Vescovo et al. 1989) und der Art der Belastung ab (Moalic et al. 1981). Aber nicht nur das Ausmaß, sondern auch die Qualität der Hypertrophie ist je nach Spezies und Ursache der Hypertrophie verschieden (Moalic et al. 1981; Hamrell u. Low 1978). Daraus resultiert ein für die jeweilige Spezies sowie für die Art und das Ausmaß der Hypertrophie spezifische Isoformzusammensetzung kardialer Moleküle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Anderson AW, Oakeley A (1989) Immunological identification of five troponin T isoforms reveals an elaborate maturational troponin T profile in rabbit myocardium. Circ Res 65:1087–1093

    PubMed  CAS  Google Scholar 

  • Anderson AW, Moore GE, Nassar RN (1988) Developmental changes in the expression of rabbit left ventricular troponin T. Circ Res 63:742–747

    PubMed  CAS  Google Scholar 

  • Anderson PAW, Oakeley AE, Allen PD (1988) Human troponin T expression in normal and in end-stage failure hearts. Circulation 80:11–503 (abstr)

    Google Scholar 

  • Arndt H, Bletz C, Katus HA, Mall G, Rüegg C (1989) Calcium sensitivity and unloaded shortening velocity of hypertrophied and non-hypertrophied skinned atrial fibres. Pflügers Arch 415:209–213

    Article  PubMed  CAS  Google Scholar 

  • Bishopric NH, Simpson PC, Ordahl CP (1987) Induction of the skeletal a-actin gene in ar adrenoceptor-mediated hypertrophic of rat cardiac myocytes. J Clin Invest 80:1194–1199

    Article  PubMed  CAS  Google Scholar 

  • Bortone AS, Hess OM, Chiddo A, Gaglione A, Locuratolo N, Caruso G. Rizzon P (1989) Functional and structural abnormalities in patients with dilated cardiomyopathy. J Am Coll Cardiol 14:613–623

    Article  PubMed  CAS  Google Scholar 

  • Bouvagnet P, Leger J, Pons F, Dechesne C, Leger JJ (1984) Fiber types and myosin types in human atrial and ventricular myocardium. Circ Res 55:794–804

    PubMed  CAS  Google Scholar 

  • Bouvagnet P, Neveu S, Montoya M, Leger JJ (1987) Developmental changes in the human cardiac isomyosin distribution: an immunohistochemical study using monoclonal antibodes. Circ Res 61: 329–336

    PubMed  CAS  Google Scholar 

  • Bouvagnet P, Mairhofer H, Leger JOC, Puech P, Leger JJ (1989) Distribution pattern of a and ß myosin in normal and diseased human ventricular myocardium. Basic Res Cardiol 84:91–102

    Article  PubMed  CAS  Google Scholar 

  • Campbell SE, Rakusan K, Gerdes AM (1989) Change in cardiac myocyte size distribution in aortic-constricted neonatal rats. Basic Res Cardiol 84:247–258

    Article  PubMed  CAS  Google Scholar 

  • Chizzonite RA, Everett AW, Prior G et al. (1984) Comparison of myosin heavy chains in atria and ventricules from hyperthyroid, hypothyroid, and euthyroid rabbits. J Biol Chem 259:15564–15571

    PubMed  CAS  Google Scholar 

  • Cummins P (1982) Transitions in human atrial and ventricular myosin light chain isoenzymes in response to cardiac-pressure-overload-induced hypertrophy. Biochem J 205:195–204

    PubMed  CAS  Google Scholar 

  • Ebrecht G, Rupp H (1982) Alterations of mechanical parameters in chemically skinned preparations of rat myocardium as a function of isoenzyme pattern of myosin. Basic Res Cardiol 77:220–234

    Article  PubMed  CAS  Google Scholar 

  • Gahlmann R, Troutt AB, Wade RP, Gunning P, Kedes L (1987) Alternative splicing generates variants in important functional domains of human slow skeltal troponin T. J Biol Chem 262:16122–16126

    PubMed  CAS  Google Scholar 

  • Gahlmann R, Wade R, Gunning P, Kedes L (1988) Differential expression of slow and fast skeletal muscle troponin C. Slow skeletal muscle troponin C is expressed in human fibroblasts. J Mol Biol 201:379–391

    Article  CAS  Google Scholar 

  • Gunning P, Ponte P, Blau H, Kedes L (1983) Alpha-skeletal and alpha-cardiac actin genes are co-expressed in adult human skeletal muscle and heart. Mol Cell Biol 3:1985–1995

    PubMed  CAS  Google Scholar 

  • Hamrell BB, Low RB (1978) The relationship of mechanical Vmax to myosin ATPase activity and rabbit and marmot ventricular muscle. Pflügers Arch 377:119–124

    Article  PubMed  CAS  Google Scholar 

  • Hirzel HO, Tuchschmid CR, Schneider J, Krayenbuehl HP, Schaub MC (1985) Relationship between myosin isoenzyme composition, hemodynamics, and myocardial structure in various forms of human cardiac hypertrophy. Cir Res 57:729–740

    CAS  Google Scholar 

  • Höh J FY, McGrath PA, Hale PT (1982) Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 10:1053–1076

    Article  Google Scholar 

  • Höh JFY, Yeoh GPS, Thomas MAW, Higginbottom L (1982) Structural differences in heavy chains of rat ventricular myosin isoenzymes. FEBS Lett 97:330–334

    Article  Google Scholar 

  • Jalil JE, Doering CW, Janicki JS, Pick R, Clark WA, Abrahams C, Weber KT (1988) Structural vs. contractile protein remodeling and myocardial stiffness in hypertrophied rat left ventricle. J Mol Cell Cardiol 20:1179–1187

    Article  CAS  Google Scholar 

  • Kamm KE, Stull JT (1985) The function of myosin and myosin light chain kinase phophorylation in smooth muscle. Ann Rev Pharmacol Toxicol 25:593–620

    Article  CAS  Google Scholar 

  • Kissling G, Rupp H, Malloy L, Jacob R (1982) Alterations in cardiac oxygen consumption under chronic pressure overload. Significance of the isoenzyme pattern of myosin. Basic Res Cardiol 77:255–270

    Article  PubMed  CAS  Google Scholar 

  • MacLeod AR, Gooding C (1988) Human hTM alpha gene: expression in muscle and nonmuscle tissue. Mol Cell Biol 81:433–440

    Google Scholar 

  • Mercadier JJ, Bouveret P, Gorza L et al. (1983) Myosin isoenzymes in normal and hypertrophied human ventricular myocardum. Circ Res 53:52–62

    PubMed  CAS  Google Scholar 

  • Mercadier JJ, De La Bastie D, Menasch P, Cao A van, Bouveret P, Lorente P (1987) Alphamyosin heavy chain isoform and atrial size in patients with various types of mitral valve dysfunction: a quantitative study. J Am Coll Cardiol 9:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Moalic JM, Bercovici J, Swynghedauw B (1981) Proteins synthesis during systolic and diastolic cardiac overloading in rats: a comparative study. Cardiovasc Res 15:515–521

    Article  PubMed  CAS  Google Scholar 

  • Morano I, Lengsfeld M, Ganten U, Ganten D, Rüegg JC (1988) Chronic hypertension changes myosin isoenzyme pattern and decreases myosin phosphorylation in the rat heart. J Mol Cell Cardiol 20:875–886

    Article  CAS  Google Scholar 

  • Morano I, Arndt H, Gärtner C, Rüegg JC (1988) Skinned fibres of human atrium and ventricle: myosin isoenzymes and contractility. Circ Res 62:632–639

    PubMed  CAS  Google Scholar 

  • Morano I, Wankerl M, Böhm M, Erdmann E, Rüegg JC (1989) Myosin P-light chain isoenzymes in the human heart: evidence for diphosphorylation of the atrial P-LC form. Basic Res Cardiol 84:298–305

    Article  PubMed  CAS  Google Scholar 

  • Pagani ED, Alousi AA, Grant AM, Older TM, Dziuban SW, Allen PD (1988) Changes in myofibrillar content and Mg-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ Res 63:380–385

    PubMed  CAS  Google Scholar 

  • Rouleau JL, Juneau C, Stephens H, Shenasa H, Parmley WW, Brutsaert DL (1989) Mechanical properties of papillary muscle in cardiac failure: importance of pathogenesis and of ventricle of origin. J Mol Cell Cardiol 21:817–828

    Article  CAS  Google Scholar 

  • Rupp H (1982) Polymorphic myosin as the common determinant of myofibrillar ATPase in different hemodynamic and thyrod states. Basic Res Cardiol 77:34–46

    Article  PubMed  CAS  Google Scholar 

  • Schier JJ, Adelstein RS (1982) Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults and patients with hypertrophic cardiomyopathy. J Clin Invest 69:816–825

    Article  PubMed  CAS  Google Scholar 

  • Schwartz K, Lompre A, Bouverett P, Wisnewsky C, Whalen RG (1982) Comparisons of rat cardiac myosins at fetal stages in young animals and in hypothyroid adults. J Biol Chem 257:14412–14418

    PubMed  CAS  Google Scholar 

  • Simpson PC, Long CS, Waspe LE, Henrich CJ, Ordahl CP (1989) Transcription of early developmental isogenes in cardiac myocyte hypertrophy. J Mol Cell Cardiol [Suppl V] 21:79–89

    Article  Google Scholar 

  • Smith HS, Nuttall A (1985) Experimental methods of heart failure. Cardiovasc Res 19:181–186

    Article  PubMed  CAS  Google Scholar 

  • Spann JF, Buccino RA, Sonnenblick EH, Braunwald E (1967) Contractile state of cardiac muscle* obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ Res 21:341–350

    PubMed  Google Scholar 

  • Spann JF, Corell JW, Eckberg DL, Sonnenblick EH, Ross J, Braunwald E (1972) Contractile performance of the hypertrophied and chronically failing cat ventricle. Am J Physiol 233:1150–1161

    Google Scholar 

  • Sweeney LJ, Zak R, Manasek FJ (1987) Transitions in cardiac isomyosin expression during differentiation of the embryonic chick heart. Circ Res 61:287–295

    PubMed  CAS  Google Scholar 

  • Tobacman LS, Lee R (1987) Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem 262:4059–4064

    PubMed  CAS  Google Scholar 

  • Tobacman LS (1988) Structure-function studies of the aminoterminal region of bovine cardiac troponin T. J Biol Chem 263:2668–2672

    PubMed  CAS  Google Scholar 

  • Tsuchimochi H, Kuro-O M, Koyama H et al. (1988) Heterogeneity of (3-type myosin isoenzymes in the human heart and regulational mechanisms in their expression. J Clin Invest 81:110–118

    Article  PubMed  CAS  Google Scholar 

  • Vescovo G, Harding SE, Jones M, Libera LD, Pessina AC, Poole-Wilson PA (1989) Contractile abnormalities of single right ventricular myocytes isolated from rats with right ventricular hypertrophy. J Mol Cell Cardiol [Suppl V] 21:103–111

    Article  Google Scholar 

  • Vliegen HW, Laarse A van der, Huysman JAN, Wijnvoord EC, Mentar M, Coraelisse CJ, Eulderink F (1987) Morphometric quantification of myocyte dimensions validated in normal growing rat hearts and applied to hypertrophic human hearts. Cardiovasc Res 21:352–357

    Article  PubMed  CAS  Google Scholar 

  • Whalen RG, Sell SM, Butler-Browne GS (1981) Three myosin heavy-chain isoenzymes appear sequentially in rat muscle development. Nature 292:805–809

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JM, Grand RJA (1978) Comparison of amino acid sequence of troponin I from different striated muscles. Nature 271:31–35

    Article  PubMed  CAS  Google Scholar 

  • Wisenbaugh T, Allen P, Cooper IV G, Holzgrefe H, Beller G, Carabello B (1983) Contractile function, myosin ATPase activity and isoenzymes in the hypertrophied pg left ventricle after a chronic progressive pressure overload. Circ Res 53:332–341

    PubMed  CAS  Google Scholar 

  • Yazaki Y, Tsuchimochi H, Kurabayashi M, Komuro I (1989) Molecular adaption to pressure overload in human and rat hearts. J Mol Cell Cardiol [Suppl V] 21:91–101

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katus, H. (1992). Pathophysiologie — Kontraktile Proteine. In: Dietz, R. (eds) Herzinsuffizienz. Aktuelle Therapieprinzipien in Kardiologie und Angiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77021-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77021-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54670-2

  • Online ISBN: 978-3-642-77021-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics