Advertisement

Pathophysiologie — Adrenerges System: kardiale adrenerge Rezeptoren und Signaltransduktionssysteme

  • R. H. Strasser
Part of the Aktuelle Therapieprinzipien in Kardiologie und Angiologie book series (THERAPIEPRINZ.)

Zusammenfassung

Myokardiale Zellen haben komplexe biochemische Mechanismen entwickelt, um Kontraktion und Relaxation zu regulieren. Eine der wichtigsten Möglichkeiten, um die Kontraktionskraft des Herzens zu modulieren, ist das über die sympathische Aktivierung gesteuerte Adenylylzyklasesystem. In jüngster Zeit finden sich zudem Hinweise, daß die sympathische Aktivierung nicht nur über das Adenylylzyklasesystem an der Myokardzelle wirksam werden kann. Auch die Aktivierung α1 adrenerger Rezeptoren besitzt über die Stimulation des Phosphatidylinosistol-systems eine positiv-inotrope Wirkung [63]. Positiv-chronotrope Effekte, aber auch arrhythmogene Effekte werden über die Modulation plasmamembrangebundener Ionenkanäle vermittelt. Auch hier zeigen neuere Daten, daß Ionenkanäle, insbesondere Kalzium- und Kaliumkanäle, indirekt durch die adrenerg vermittelte Aktivierung intrazellulärer Proteinkinasen, d.h. der Proteinkinase A und C, erfolgen kann. Aber auch eine direkte Aktivierung der Kanäle durch aktivierte G-Proteine kann innerhalb der Plasmamembranen wirksam werden. Dies spielt möglicherweise eine wichtige Rolle bei der chronischen Herzinsuffizienz [14, 77, 78]. Erste Daten weisen darauf hin, daß die Adenylylzyklase selbst aufgrund ihrer molekularen Struktur möglicherweise auch funktionell einen Kaliumkanal darstellt[46].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Amatruda TT, Gautam N, Fong H-KW, Northup JK, Simon MI (1988) The 35- and 36-kDa β subunits of GTP-binding regulatory proteins are products of separate genes. J Biol Chem 263:5008–5011PubMedGoogle Scholar
  2. 2.
    Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ (1986) Beta-adrenergic receptor kinase: Identification of a novel protein kinase which phosphorylates the agonistoccupied form of the receptor. Proc Natl Acad Sci USA 83:2797–2801PubMedCrossRefGoogle Scholar
  3. 3.
    Benovic JL, Bouvier M, Caron MG, Lefkowitz RJ (1988) Regulation of adenylyl cyclasecoupled β-adrenergic receptors. Annu Rev Cell Biol 4:405–428PubMedCrossRefGoogle Scholar
  4. 4.
    Berridge MJ (1987) Inositol triphosphate und diacylglycerol: Two interacting second messenger. Annu Rev Biochem 56:159–193PubMedCrossRefGoogle Scholar
  5. 5.
    Böhm M, Eide B, Gierschik P, Jakobs KH, Erdmann E (1988) Identifikation of a Gicc2 in the normal and failing human myocardium. Circulation 78:11–56Google Scholar
  6. 6.
    Bray P, Carter A, Simons C et al (1986) Human cDNA clones for four species of Gas signal transduction protein. Proc Natl Acad Sci USA 83:8893–8897PubMedCrossRefGoogle Scholar
  7. 7.
    Bristow MR, Ginsburg R, Minobe W et al. (1982) Decreased catecholamine sensitivity and β- adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211PubMedCrossRefGoogle Scholar
  8. 8.
    Bristow MR, Ginsburg R, Umans V et al. (1986) βr and β2-Adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective βr receptor down-regulation in heart failure. Circ Res 59:297–309PubMedGoogle Scholar
  9. 9.
    Bristow MR, Minobe W, Rasmussen R, Hershberger RE, Hoffmann BB (1989) α1-Adrenergic receptors in the non-failing and failing human heart. J Pharmacol Exp Ther 247:1039–1045Google Scholar
  10. 10.
    Brodde OE, Karad K, Zerkowski HR, Rohm N, Raidemeister JC (1983) Coexistence of βr and β2-adrenoceptors in human right atrium. Direct identification by (±)-I-Iodocynaopindolol binding. Circ Res 53:752–758PubMedGoogle Scholar
  11. 11.
    Brodde OE, O’Hara N, Zerkowski H-R, Rohm N (1984) Human cardiac β-adrenoeeptors: Both βr and β2-adrenoceptors are functionally coupled to the adenylate cyclase in right atrium. J Cardiovasc Pharmacol 6:1184–1191PubMedGoogle Scholar
  12. 12.
    Brodde O-E, Zerkowski HR, Doetsch N, Motomura S, Khamssi M, Michel MC (1989) Myocardial beta-adrenoceptor changes in heart failure: Concomitant reduction in betar and beta2-adrenoceptor function related to the degree of heart failure in patients with mitral valve disease. J Am Coll Cardiol 14:323–331PubMedCrossRefGoogle Scholar
  13. 13.
    Brodde O-E, Daul A, Michel-Reher M et al. (1990) Agonist-induced desensitization of β- adrenoceptor function in humans. Subtype-selective reduction in βr or β2-adrenoceptor- mediated physiological effects by xamoterol or prolacterol. Circulation 81:914–921PubMedCrossRefGoogle Scholar
  14. 14.
    Brown AM, Yatani A, Imoto Y, Codina J, Mattera R, Birnbaumer L (1989) Direct G-protein regulation of Ca2+ channels. Ann NY Acad Sci 560:373–386PubMedCrossRefGoogle Scholar
  15. 15.
    Casey PJ, Gilman AG (1988) G Protein involvement in receptor-effecto coupling. J Biol Chem 263:2577–2580PubMedGoogle Scholar
  16. 16.
    Cheung AH, Sigal IS, Dixon RAF, Strader CD (1989) Agonist-promoted sequestration of the β-adrenergic receptor requires regions involved in functional coupling with Gs Mol Pharmacol 34:132–138Google Scholar
  17. 17.
    Cohn JN, Levine TB, Garberg V et al. (1985) Plasma norepinephrine as a guide to prognosis in patients with congestive heart failure. N Engl J Med 78:455–457Google Scholar
  18. 18.
    Collins S, Bolanowski MA, Caron MG, Lefkowitz RJ (1989) Genetic regulation of β-adrenergic receptors. Annu Rev Physiol 51:203–215PubMedCrossRefGoogle Scholar
  19. 19.
    Dohlman HG, Bouvier M, Benovic JL, Caron MG, Lefkowitz RJ (1987) The multiple membrane spanning topography of the β2-adrenergic receptor. J Biol Chem 262:14282–14288PubMedGoogle Scholar
  20. 20.
    Emorine LJ, Marullo S, Briend-Sutren M-M et al. (1989) Molecular characterization of the human β3-adrenergic receptor. Science 245:1118–1121PubMedCrossRefGoogle Scholar
  21. 21.
    Endoh M, Blincks JR (1988) Actions of sympathomimetic amines on the C2+ transients and contractions of rabbit myocardium: Reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through a- and β-adrenoeeptors. Circ Res 62:247–265PubMedGoogle Scholar
  22. 22.
    Engelmeier RS, O’Connell JB, Walsh R, Rad N, Scanlon PJ, Gunnar RM (1985) Improvement in symptoms and exercise tolerance by metroprolol in patients with dilated cardiomyopathy: A double-blind, randomized, placebo-controlled trial. Circulation 72:536–546PubMedCrossRefGoogle Scholar
  23. 23.
    Evans T, Fawzi A, Fräser ED, Brown ML, Northup JK (1987) Purification of a β35 form of the β complex common to G-proteins from human placental membranes. J Biol Chem 262:176–181PubMedGoogle Scholar
  24. 24.
    Fan T-HM, Liang C-S, Kawashima S, Banerjee SP (1987) Alterations in cardiac β-adrenoeep- tor responsiveness and adenylate cyclase system by congestive heart failure in dogs. Eur J Pharmacol 140:123–132PubMedCrossRefGoogle Scholar
  25. 25.
    Feldman AM, Cates AE, Veazey WB et al (1988) Increase of the 40000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82:189–197PubMedCrossRefGoogle Scholar
  26. 26.
    Feldman AM, Bristow MR (1990) The β-adrenergic pathway in the failing human heart: Implications for inotropic therapy. Cardiology 77:159–232CrossRefGoogle Scholar
  27. 27.
    Feldman AM, Cates AE, Bristow MR, Dop C van (1989) Altered expression of β-subunits of G proteins in failing human hearts. J Mol Cell Cardiol 21:359–365PubMedCrossRefGoogle Scholar
  28. 28.
    Fong HK, Amatruda TT, Birren BW, Simon MI (1987) Distinct forms of the a-subunit of GTP-binding regulatory proteins identified by molecular cloning. Proc Natl Acad Sci USA 84:3792–3796PubMedCrossRefGoogle Scholar
  29. 29.
    Fowler MB, Laser JA, Hopkins GL, Minobe W, Bristow MR (1986) Assessment of the β-adrenergic receptor pathway in the intact failing human heart: Progressive receptor down-regulation and subsensitivity to agonist response. Circulation 74:1290–1302PubMedCrossRefGoogle Scholar
  30. 30.
    Francis GS, Goldsmith SR, Cohn JN (1982) Relationship of exercise capacity to resting left ventricular performance and basal norepinephrine levels in patients with congestive heart failure. Am Heart J 104:725–731PubMedCrossRefGoogle Scholar
  31. 31.
    Freissmuth M, Casey PJ, Gilman AG (1989) G proteins control diverse pathways of transmembrane signaling. FASEB J 3:2125–2131PubMedGoogle Scholar
  32. 32.
    Frey MJ, Molinoff PB (1989) Mechanisms of downregulation of β-adrenergic receptors: Perspective on the role of β-adrenergic receptors in congestive heart failure. J Cardiovasc Pharmacol [Suppl 5] 14:S13-S18Google Scholar
  33. 33.
    Frielle T, Daniel KW, Caron MG, Lefkowitz RJ (1988) Structural basis of β-adrenergic receptor subtype specificity studied with chimeric β12-adrenergic receptors. Proc Natl Acad Sci USA 85:9494–9498PubMedCrossRefGoogle Scholar
  34. 34.
    Gilbert EM, Anderson JL, Deitchman D et al. (1987) Chronic beta-blockade with bucindolol improves resting cardiac function in dilated cardiomyopathy. Circulation 76:1423Google Scholar
  35. 35.
    Gilman AG (1989) G Proteins and regulation of adenylyl cyclase. JAMA 262:1819–1825PubMedCrossRefGoogle Scholar
  36. 36.
    Ginsburg R, Bristow MR, Billingham ME, Stinson EB, Schroeder JS, Harrison DC (1983) A study of the normal and failing isolated human heart: Decreased response of failing heart to isoproterenol. Am Heart J 106:535–540PubMedCrossRefGoogle Scholar
  37. 37.
    Ginsburg R, Esserman LJ, Bristow MR (1983) Myocardial performance and extracellular ionized calcium in a severely failing human heart. Ann Intern Med 98:603–606PubMedGoogle Scholar
  38. 38.
    Graziano MP, Casey PJ, Gilman AG (1987) Expression of cDNAs for G proteins in escherichia coli. Two forms of GsÄ stimulate adenylate cyclase. J Biol Chem 262:11375–11381PubMedGoogle Scholar
  39. 39.
    Gristwood R, Ginsburg R, Zera P (1986) Are alpha-adrenoceptors coupled to contraction in human heart? Circulation 74:11–374Google Scholar
  40. 40.
    Harden TK (1983) Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev 35:5–32PubMedGoogle Scholar
  41. 41.
    Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: Evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621PubMedCrossRefGoogle Scholar
  42. 42.
    Heilbrunn SM, Shah P, Bristow MR, Valantine HA, Ginsburg R, Fowler MG (1989) Increased β-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 79:483–490PubMedCrossRefGoogle Scholar
  43. 43.
    Hulme EC, Birdsall NJM, Buckley NJ (1990) Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633–673PubMedCrossRefGoogle Scholar
  44. 44.
    Kaumann AJ (1989) Is there a third heart β-adrenoceptor. TIPS 10:316–320PubMedGoogle Scholar
  45. 45.
    Kobilka BK, Matsui H, Kobilka TS et al (1987) Cloning, sequencing, and expression of the gene coding for the human platelet Ä2-adrenergic receptor. Science 238:650–656PubMedCrossRefGoogle Scholar
  46. 46.
    Krupinski J, Coussen F, Bakalyar HA et al. (1989) Adenylyl cyclase amino acid sequence: Possible channel- or transporter-like structure. Science 244:1558–1564PubMedCrossRefGoogle Scholar
  47. 47.
    Lefkowitz RJ, Hausdorff WP, Caron MG (1990) Role of phosphorylation in desensitization of the β-adrenoceptor. Trends Pharmacol Sci 11:190–194PubMedCrossRefGoogle Scholar
  48. 48.
    Limas CJ, Goldenberg IF, Limas C (1989) Autoantibodies against β-adrenoeeptors in human idiopathic dilated cardiomyopathy. Circ Res 64:97–103PubMedGoogle Scholar
  49. 49.
    Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) β-Arrestin: A protein that regulates β-adrenergic receptor function. Science 248:1547–1550PubMedCrossRefGoogle Scholar
  50. 50.
    Longabaugh JP, Vatner DE, Vatner SF, Homcey CJ (1988) Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overload left ventricular failure. J Clin Invest 81:420–424PubMedCrossRefGoogle Scholar
  51. 51.
    Magnusson Y, Marullo S, Hoyer S et al. (1990) Mapping of a functional autoimmune epitope on the βr adrenergic receptor in patients with idiopathic dialated cardiomyopathy. J Clin Invest 86:1658–1663PubMedCrossRefGoogle Scholar
  52. 52.
    Majerus PW, Connolly TM, Bansal VS, Inhorn RC, Ross TS, Lips DL (1988) Inositol phosphates: Synthesis and degradation. J Biol Chem 263:3051–3054PubMedGoogle Scholar
  53. 53.
    Marquetant R, Brehm B, Strasser RH (1989) cAMP-Independent transregulation of antagonistic receptors of the adenylyl cyclase system. Circulation 80:11–18Google Scholar
  54. 54.
    Mattera R, Graziano MP, Yatani A et al. (1989) Splice variants of the a subunit of the G protein Gs activate both adenylyl cyclase and calcium channels. Science 243:804–807PubMedCrossRefGoogle Scholar
  55. 55.
    Neumann J, Scholz H, Döring V, Schmitz W, Meyeninck L von, Kalmar P (1989) Anstieg der myokardialen Gi-Proteine bei Herzinsuffizienz. Lancet 11:105–106Google Scholar
  56. 56.
    O’Dowd BF, Lefkowitz RJ, Caron MG (1989) Structure of the adrenergic and related receptors. Annu Rev Microbiol 12:67–83Google Scholar
  57. 57.
    Otani H, Otani O, Das DK (1988) ar Adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscle. Circ Res 62:8–17Google Scholar
  58. 58.
    Petch MC, Nayler WG (1979) Uptake of catecholamines by human cardiac muscle in vitro. Br Heart J 41:336–339PubMedCrossRefGoogle Scholar
  59. 59.
    Pfeuffer T (1989) Hormone- and calcium-regulated adenylate cyclases. Biol Chem Hoppe Seyler 370:278–279Google Scholar
  60. 60.
    Poole-Wilson PA (1990) Cellular mechanisms in heart failure. J Mol Cell Cardiol 22:111–146CrossRefGoogle Scholar
  61. 61.
    Rector TS, Olivari MT, Levine TB, Francis GS, Cohn JN (1987) Predicting survival for an individual with congestive heart failure using the plasma norepinephrine concentration. Am Heart J 114:148–152PubMedCrossRefGoogle Scholar
  62. 62.
    Reithmann C, Gierschik P, Werdan K, Jakobs KH (1989) Mechanism of noradrenalineinduced heterologous desensitization of adenylate cyclase stimulation in rat heart muscle cells: Increase in the level of inhibitory G-protein alpha-subunits. Eur J Pharmacol (1988) 172:211–221CrossRefGoogle Scholar
  63. 63.
    Scholz A, Schaefer B, Schmitz W et al. (1988) Alpha-adrenoceptor-mediated positive inotropic effect and inositol trisphosphate increase in mammalian heart. J Pharmacol Exp Ther 245:327–335PubMedGoogle Scholar
  64. 64.
    Sternweis PC (1986) The purified Ä subunits of Go and Gi from bovine brain require β for association with phospholipid vesicles. J Biol Chem 261:637Google Scholar
  65. 65.
    Stiles GL, Taylor S, Lefkowitz RJ (1983) Human cardiac beta-adrenregic receptors: Subtype heterogeneity delineated by direct radioligand binding. Life Sci 33:467–473PubMedCrossRefGoogle Scholar
  66. 66.
    Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RAF (1989) Identification of two serine residues involved in agonist activation of the β-adrenergic receptor. J Biol Chem 264:13572–13578PubMedGoogle Scholar
  67. 67.
    Strasser RH, Lefkowitz RJ (1985) Homologous desensitization of the beta-adrenregic coupled adenylate cyclase: Resensitization by polyethylene glycol treatment. J Biol Chem 260:4561–4564PubMedGoogle Scholar
  68. 68.
    Strasser RH, Stiles GL, Lefkowitz RJ (1984) Translocation and uncoupling of the betaadrenergic receptor in rat lung after catecholamine-promoted desensitization in vivo. Endocrinology 115:1392–1400PubMedCrossRefGoogle Scholar
  69. 69.
    Strasser RH, Cerione RA, Codina J, Caron MG, Lefkowitz RJ (1985) Homologous desensitization of the beta-adrenregic receptors: Functional integrity of the desensitized receptor from mammalian lung. Mol Pharmacol 28:237–245PubMedGoogle Scholar
  70. 70.
    Strasser RH, Benovic JL, Caron MG, Lefkowitz RJ (1986) Beta-agonist and Prostaglandine Er induced translocation of the beta-adrenergic receptor kinase: Evidence that the kinase may act on multiple adenylate cyclase coupled receptors. Proc Natl Acad Sci USA 83:6362–6366PubMedCrossRefGoogle Scholar
  71. 71.
    Strasser RH, Krimmer J, Dullaeus BR, Marquetant R, Kübler W (1990) Dual sensitization of the adrenergic system in early myocardial ischemia: Independent regulation of the β-adrenergic receptors and the adenylyl cyclase. J Mol Cell Cardiol 22:1405–1423PubMedCrossRefGoogle Scholar
  72. 72.
    Strasser RH, Marquetant R, Kübler W (1990) Independent sensitization of β-adrenergic receptors and adenylate cyclase in acute myocardial ischemia. Br J Pharmacol 30:27S-35 SGoogle Scholar
  73. 73.
    Strasser RH, Marquetant R, Kübler W (1990) Adrenergic receptors and sensitization of adenylyl cyclase in acute myocardial ischemia. Circulation 82:1123–29Google Scholar
  74. 74.
    Strasser RH, Dullaeus BR, Walendzik H, Kübler W, Marquetant R (im Druck) Aktivierung der Proteinkinase C in der früher Myokardischämie induziert die Sensibilisierung der Adenylylzyklase. Z KardiolGoogle Scholar
  75. 75.
    Strauss MH, Reeves RA, Smith DL, Leenen FHH (1986) The role of cardiac beta 1 receptors in the hemodynamic response to a beta2 agonist. Clin Pharmacol Ther 40:108–115PubMedCrossRefGoogle Scholar
  76. 76.
    Swedberg K, Hjalmarson A, Waagstein F, Wallentin I (1980) Adverse effects of beta-blockade withdrawal in patients with congestive cardiomyopathy. Br Heart J 44:134–142PubMedCrossRefGoogle Scholar
  77. 77.
    Szabo G, Otero AS (1990) G Protein mediated regulation of K+ channels in heart. Annu Rev Physiol 52:293–305PubMedCrossRefGoogle Scholar
  78. 78.
    Tsien RW, Bean BP, Hess P, Lansman JB, Nilius B, Nowycky MC (1986) Mechanisms of calcium channel modulation by β-adrenergic agents and dihydropyridine calcium agonists. J. Mol Cell Cardiol 18:691–710PubMedCrossRefGoogle Scholar
  79. 79.
    Vatner DE, Vatner SF, Fujii AM, Homey C (1985) Loss of high affinity cardiac beta adrenergic receptors in dogs with heart failure. J Clin Invest 76:2259–2264PubMedCrossRefGoogle Scholar
  80. 80.
    Vatner DE, Vatner SF, Nejima J et al. (1989) Chronic norepinephrine elicits desensitization by uncoupling the β-reeeptor. J Clin Invest 84:1741–1748PubMedCrossRefGoogle Scholar
  81. 81.
    Waagstein F, Hjalmarson A, Varnauskas E, Wallentin I (1975) Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J 37:1022–1036PubMedCrossRefGoogle Scholar
  82. 82.
    Yoshimasa T, Sibley DR, Bouvier M, Lefkowitz RJ, Caron MG (1987) Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature 327:67–70PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • R. H. Strasser

There are no affiliations available

Personalised recommendations