Skip to main content

Pathophysiologie — Adrenerges System: sympathische Aktivität

  • Chapter
Book cover Herzinsuffizienz

Part of the book series: Aktuelle Therapieprinzipien in Kardiologie und Angiologie ((THERAPIEPRINZ.))

  • 46 Accesses

Zusammenfassung

Bei herzinsuffizienten Patienten findet sieh eine Aktivierung des sympathoadrenergen Systems. Hinweise auf die Aktivierung dieses zentralen neurohumoralen Systems ergeben sich sowohl aus dem klinischen Bild der Patienten als auch aus der Messung der sympathischen neuronalen Aktivität und der Bestimmung der Kateeholaminfreisetzung. Die Höhe der Plasmanoradrenalinkonzentration korreliert mit dem Schweregrad der Herzinsuffizienz und ist als prognostischer Indikator den hämodynamischen Parametern überlegen.

Die Ursachen der erhöhten sympathischen Aktivität bei Herzinsuffizienz sind bisher nicht eindeutig geklärt. Diskutiert werden:

  1. 1.

    eine Störung der Barorezeptorempfindlichkeit und der zentralen Kreislaufreflexe,

  2. 2.

    eine Aktivierung des Sympathikus durch andere vasopressorische Systeme (z.B. das Renin-Angiotensin-System) und

  3. 2.

    eine verminderte Elimination der Katecholamine.

Die sympathische Aktivierung kann kurzfristig zur Rekompensation einer schweren Herzinsuffizienz beitragen. Eine längerfristige sympathische Aktivierung gilt aber als wesentlicher pathophysiologischer Faktor für die Progression der Herzinsuffizienz. Diese Einschätzung beruht auf der Beobachtung, daß eine sympathoadrenerge Aktivierung den Energiemangel der noch aktiven Myokardzellen verstärkt und damit zum weiteren Absterben von Myokardzellen führt. Außerdem gibt es Hinweise, daß die sympathische Stimulation ein wichtiger Faktor in der Genese von Rhythmusstörungen bei herzinsuffizienten Patienten ist und daß sie zur Hypertrophie des Herzmuskels beiträgt.

Erste Untersuchungen zeigen günstige Wirkungen einer niedrig dosierten ß-Blockade bei der Herzinsuffizienz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aldemann J, Grossman W (1985) Are ß-adrenergic-blocking drugs useful in the treatment of dilated cardiomyopathy? Circulation 71:854–857

    Article  Google Scholar 

  • Amorim DS, Heer K, Jenner D et al. (1981) Is there autonomic impairment in congestive (dilated) cardiomyopathy? Lancet 7:525–529

    Article  Google Scholar 

  • Aylward PE, Ploras JS, Leimbach WN, Abboud FM (1986) Effects of vasopressin on the circulation and its baroreflex control in healthy men. Circulation 73:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Bristow MR (1984) The adrenergic nervous system in heart failure. N Engl J Med 27:850–851

    Article  Google Scholar 

  • Brunner DB, Burnier M, Brunner HR (1983) Plasma vasopressin in rats: effect of sodium, angiotensin, and catecholamines. Am J Physiol 244:H259-H265

    PubMed  CAS  Google Scholar 

  • Chidsey CA, Braunwald E, Morrow AG (1965) Catecholamine excretion and cardiac stores of noradrenaline in congestive heart failure. Am J Med 39:442–451

    Article  PubMed  CAS  Google Scholar 

  • Chidsey CA, Harrison DC, Braunwald E (1962) Augmentation of plasma norepinephrine response to exercise in patients with congestive heart failure. N Engl J Med 267:650–657

    Article  PubMed  CAS  Google Scholar 

  • Chidsey CA, Sonnenblick EH, Morrow AG, Braunwald E (1966) Norepinephrine stores and contractile force of papillary muscle from the failing human heart. Circulation 33:43–51

    PubMed  CAS  Google Scholar 

  • Cleland JGF, Dargie HJ, Hodsman GB et al. (1984) Captopril in heart failure. A double blind controlled clinical trial. Br Heart J 52:530–535

    Article  PubMed  CAS  Google Scholar 

  • Cleland JGF, Dargie HJ (1988) Arrhythmias, catecholamines and electrolytes. Am J Cardiol 62:55A-59A

    Article  PubMed  CAS  Google Scholar 

  • Cohn JN, Levine TB, Olivari MT et al. (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 31113:819–823

    Article  Google Scholar 

  • Cryer PE (1980) Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 303:436–444

    Article  PubMed  CAS  Google Scholar 

  • Daly PA, Sole MJ (1990) Myocardial catecholamines and the pathophysiology of heart failure. Circulation [Suppl I] 82:35–43

    Google Scholar 

  • Davis D, Baily R, Zelis R (1987) Abnormalities in systemic norepinephrine kinetics in human congestive heart failure. Am J Physiol 254:E760-E766

    Google Scholar 

  • Drexler H, Banhardt U, Meinertz T, Wollschläger H, Lehmann M, Just H (1989) Contrasting peripheral short-term and long-term effects of converting enzyme inhibition in patients with congestive heart failure. Circulation: 79:491–502

    Article  PubMed  CAS  Google Scholar 

  • Dunn FG, Ventura HO, Messerli FH, Kobrin I, Fröhlich ED (1987) Time course of regression of left ventricular hypertrophy in hypertensive patients treated with atenolol. Circulation 76:254–258

    Article  PubMed  CAS  Google Scholar 

  • Engelmeier RS, O’Connell JB, Walsh R, Rad N, Scanion PJ, Gunnar RM (1985) Improvement in symptoms and exercise tolerance by metoprolol in patients with dilated cardiomyopathy: a double-blind, randomized, placebo-controlled trial. Circulation 72:536–546

    Article  PubMed  CAS  Google Scholar 

  • Eckberg DL, Drabinsky M, Braunwald E (1971) Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 285 16: 877–883

    Article  PubMed  CAS  Google Scholar 

  • Epstein SE, Braunwald E (1966) The effect of beta-adrenergic blockade on patterns of urinary sodium excretion: Studies in normal subjects and in patients with heart disease. Ann Intern Med 75:20–27

    Google Scholar 

  • Esler M, Jennings G, Korneret al. (1988) Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 11:3–20

    PubMed  CAS  Google Scholar 

  • Ferguson DW, Abboud FM, Mark AL (1984) Selective impairment of baroreflex-mediated vasoconstrictor responses in patients with ventricular dysfunction. Circulation 69:451–460

    Article  PubMed  CAS  Google Scholar 

  • Floras JS, Aylwared PE, Gupta AN, Mark AL, Abboud FM (1986) Modulation of cardiovascular reflexes by arginine vasopressin. Can J Physiol 65:1717–1723

    Article  Google Scholar 

  • Fuller SJ, Gaitanaki CJ, Sudgen PH (1990) Effects of catecholamines on protein synthesis in cardiac myocytes and perfused hearts isolated from adult rats. Biochem J 266:727–736

    PubMed  CAS  Google Scholar 

  • Gaffney TE, Braunwald E (1963) Importance of the adrenergic nervous system in the support of circulatory function in patients with congestive heart failure. Am J Med 34:320–325

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DS (1981) Plasma norepinephrine as an indicator of sympathetic neural activity in clinical cardiology. Am J Cardiol 48:1147–1154

    Article  PubMed  CAS  Google Scholar 

  • Gregory JH, Murray DE, Garry LJ, Deborah B, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621

    Article  Google Scholar 

  • Haass, M, Hock M, Richardt G., Schomig A (1989) Neuropeptide Y differentiates between exocytotic and nonexocytotic noradrenaline release in guinea-pig heart. Naunyn Schmiedebergs Arch Pharmacol 340:509–515

    Article  PubMed  CAS  Google Scholar 

  • Hasser EM, Haywood JR, Johnson AK, Bishop VS (1984) The role of vasopressin and the sympathetic nervous system in the cardiovascular response to vagal cold block in the conscious dog. Circ Res 55:454–462

    PubMed  CAS  Google Scholar 

  • Hasking GJ, Esler MD, Jennings GL, Burton D, Korner PI (1986) Noradrenaline spillover to plasma in patients with congestive heart failure; evidence of increased overall and cardio-renal sympathetic nervous activity. Circulation 73:615–621

    Article  PubMed  CAS  Google Scholar 

  • Heyndrickx GR, Muylaert P, Pannier JL (1982) Alpha-adrenergic control of oxygen delivery to myocardium during exercise in concious dogs. Am J Physiol 242:H805–815

    PubMed  CAS  Google Scholar 

  • Holtz J, Münzel T, Bassenge E (1987) Das natriuretische Vorhofhormon im Menschen. Z Kardiol 76:655–670

    PubMed  CAS  Google Scholar 

  • Holtz J, Münzel T, Sommer O, Bassenge E (1989) Sympathoadrenal inhibition by atrial natriuretic peptide is not attenuated during development of congestive heart failure in dogs. Circulation 80:1862–1869

    Article  PubMed  CAS  Google Scholar 

  • Katz AM (1990) Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med 322:100–110

    Article  PubMed  CAS  Google Scholar 

  • Kluger J, Cody JR, Laragh JH (1982) The contributions of sympathetic tone and the reninangiotensin system to severe chronic congestive heart failure: response to specific inhibitors (prazosin and captopril). Am J Cardiol 49:1667–1674

    Article  PubMed  CAS  Google Scholar 

  • Leimbach WN, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark L (1986) Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 73:913–919

    Article  PubMed  Google Scholar 

  • Levine TB, Francis GS, Goldsmith SR, Simon AB, Cohn JN (1982) Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 49:1659–1666

    Article  PubMed  CAS  Google Scholar 

  • Limas CJ, Limas C, Kubo SH, Olivari MT (1990) Anti-beta-receptor antibodies in human dilated cardiomyopathy and correlation with HLA-DR antigenes. Am J Cardiol 65:483–487

    Article  PubMed  CAS  Google Scholar 

  • Packer M (1988) Neurohormonal interactions and adaptations in congestive heart failure. Circulation 77:721–730

    Article  PubMed  CAS  Google Scholar 

  • Packer M (1990) Role of the sympathetic nervous system in chronic heart failure — A historical and philosophical perspective. Circulation [Suppl I] 82:1–6

    Article  Google Scholar 

  • Parmley WW (1987) Factors causing arrhythmias in chronic congestive heart failure. Am Heart J 114 5:1267–1272

    Article  PubMed  CAS  Google Scholar 

  • Petch MC, Nayler WG (1979) Uptake of catecholamines by human cardiac muscle in vitro. Br Heart J 41:336–339

    Article  PubMed  CAS  Google Scholar 

  • Podrid PJ, Fuchs T, Candinas R (1990) Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation [Suppl I] 82:103–113

    Google Scholar 

  • Pool PE, Covell JW, Levitt M, Gibb J, Braunwald E (1967) Reduction of cardiac tyrosine hydroxylase activity in experimental congestive heart failure. Its role in depletion of cardiac norepinephrine stores. Circ Res 20:349–355

    PubMed  CAS  Google Scholar 

  • Richardt G, Mayer F, Schomig A (1991) Role of angiotensin and sodium intake in cardiac nonadrenaline release. Naunyn-Schmiedeberg’s Arch Pharmacol 344:297–301

    Article  CAS  Google Scholar 

  • Rose CP, Burgess JH, Cousineau D (1983) Reduced aortocoronary sinus extraction of epinephrine in patients with left ventricular failure secondary to long-term pressure or volume overload. Circulation 68:241–244

    Article  PubMed  CAS  Google Scholar 

  • Rose CP, Burgess JH, Cousineau D (1985) Tracer norepinephrine kinetics in coronary circulation of patients with heart failure secondary to chronic pressure and volume overload. J Clin Invest 76:1740–1747

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Kida O, Kangawa K, Matsuo H, Tanaka K (1986) Involvement of sympathetic nerves in cardiosuppressive effects of a a-human atrial natriuretic polypeptide in anesthetized rats. Eur J Pharmacol 120:345–349

    Article  PubMed  CAS  Google Scholar 

  • Sklar AH, Schrier RW (1983) Central nervous system mediators of vasopressin release. Physiol Rev 68:1243–1253

    Google Scholar 

  • Schlant RC, Sonnenblick EH (1985) Pathophysiology of heart failure. In: Hurst JW (ed) The heart. McGraw-Hill, New York, pp 319–345

    Google Scholar 

  • Swedberg K, Viquerat C, Rouleau J, Roizen M, Atherton B, Parmley WW, Chatterjee K (1984) Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol 54:783–786

    Article  PubMed  CAS  Google Scholar 

  • Takiyyuddin M, Cervenco JH, Sullivan PA, Pandian MR, Parmer RJ, Barbosa JA, O’Conner DT (1990) Is physiologic sympathoadrenal catecholamine release exocytotic in humans? Circulation 81:185–195

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Marks BH (1978) Plasma norepinephrine in congestive heart failure. Am J Cardiol 41:233–243

    Article  PubMed  CAS  Google Scholar 

  • Waagstein F, Hjalmarson A, Swedberg K, Wallentin I (1983) Beta-blockers in dilated cardiomyopathies: they work. Eur Heart J [Suppl A] 4:173–177

    Google Scholar 

  • Wilson JR, Martin JL, Schwartz D, Ferraro N (1984) Exercise intolerance in patients with chronic heart failure: Role of impaired skeletal muscle nutritive flow. Circulation 69:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Viquerat CE, Daly P, Swedberg K, Evers C, Curran D Parmley WW, Chatterjee K (1985) Endogenous catecholamine levels in chronic heart failure. Am J Med 78:455–460

    Article  PubMed  CAS  Google Scholar 

  • Zelis R, Sinoway L, Musch T, Davis D (1988) The peripheral distribution of cardiac output in heart failure. Z Kardiol [Suppl 5] 77:61–65

    Google Scholar 

  • Zimmermann BG, Sybertz EJ, Wong PC (1984) Interaction between sympathetic and renin-angiotensin system. J Hypertens 2:581–587

    Article  Google Scholar 

  • Zwieten PA van (1988) Compensatory changes of sympathetic tone, the renin-angiotensin-aldosterone system, vasopressin, and ANF as potential therapeutic targets in congestive heart failure. Z Kardiol [Suppl 5] 77:67–76

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richardt, G., Schömig, A. (1992). Pathophysiologie — Adrenerges System: sympathische Aktivität. In: Dietz, R. (eds) Herzinsuffizienz. Aktuelle Therapieprinzipien in Kardiologie und Angiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77021-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77021-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54670-2

  • Online ISBN: 978-3-642-77021-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics