Skip to main content

Effects of the Membrane Attack Complex of Complement on Nucleated Cells

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 178))

Abstract

In the last quarter of the nineteenth century several workers described the heatlabile lytic action of serum on bacteria and erythrocytes, and it was these observations which led to the discovery of the complement system (Nuttal 1888; Bordet 1898; Ehrlich and Morgenroth 1899). These lytic activities were subsequently shown to be mediated by the final stage in the complement system, the membrane attack complex (MAC). Given this history it is therefore perhaps not surprising that, until very recently, the MAC was considered by the majority of immunologists to be a lytic entity, the sole role of which was kill target cells. The concept that the MAC might cause more subtle (and often more pathologically relevant) changes in target cells has only recently gained widespread acceptance. The concept is of particular relevance when the targets are nucleated and metabolically active, although important nonlethal changes may also be induced in non-nucleated cells (see Chap. 7).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler S, Baker P, Johnson RJ, Ochi R, Pritzl P, Couser WG (1986) Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat mesangial cells. J Clin Invest 77: 762–767

    Article  PubMed  CAS  Google Scholar 

  • Allan D, Michell RH (1979) The possible role of lipids in control of membrane fusion during secretion. Symp Soc Exp Biol 33: 323–336

    PubMed  CAS  Google Scholar 

  • Biesecker G, Gomez CM (1989) Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J Immunol 142: 2654–2659

    PubMed  CAS  Google Scholar 

  • Bordet J (1898) Sur 1′agglutination et la dissolution des globules rouges par le serum d’aminaux injectes de sang defibrine. Ann Inst Pasteur 12: 688–695

    Google Scholar 

  • Boyle MDP, Ohanian S, Borsos T (1976a) Lysis of tumor cells by antibody and complement VII. Complement-dependent 86Rb release-a non-lethal event. J Immunol 117: 1346–1350

    PubMed  CAS  Google Scholar 

  • Boyle MDP, Ohanian S, Borsos T (1976b) Studies on the terminal stages of antibody-complement- mediated killing of a tumor cell. II. Inhibition of transformation of T* to dead cells by 3′5′ cAMP. J Immunol 116: 1276–1279

    PubMed  CAS  Google Scholar 

  • Boyle MDP, Ohanian S, Borsos T (1978) Effect of protease treatment on the sensitivity of tumor cells to antibody-GPC killing. Clin Immunol Immunopathol 10: 84–94

    Article  PubMed  CAS  Google Scholar 

  • Campbell AK (1982) Intracellular calcium: its universal role as regulator. Wiley, Chichester, pp 257–304

    Google Scholar 

  • Campbell AK, Luzio JP (1981) Intracellular calcium as a pathogen in cell damage initiated by the immune system. Experientia 37: 110–112

    Article  Google Scholar 

  • Campbell AK, Morgan BP (1985) Monoclonal antibodies demonstrate protection of polymorphonuclear leukocytes against complement attack. Nature 317: 164–166

    Article  PubMed  CAS  Google Scholar 

  • Campbell AK, Daw RA, Luzio JP (1979) Rapid increase in intracellular free Ca2+ induced by antibody plus complement. FEBS Lett 107: 55–60

    Article  PubMed  CAS  Google Scholar 

  • Campbell AK, Daw RA, Hallett MB, Luzio JP (1981) Direct measurement of the increase in intracellular free Ca2+ concentration in response to the action of complement. Biochem J 194: 551–560

    PubMed  CAS  Google Scholar 

  • Camussi G, Salvidio G, Biesecker G, Brentjens J, Andres G (1987) Heyman antibodies induce complement-dependent injury of rat glomerular visceral epithelial cells. J Immunol 139: 2906–2914

    PubMed  CAS  Google Scholar 

  • Carney DF, Koski CL, Shin ML (1985) Elimination of terminal complement intermediates from the plasma membrane of nucleated cells: the rate of disappearance differs for cells carrying C5b-7 or C5b-8 or a mixture of C5b-8 with a limited number of C5b-9. J Immunol 134: 1804–1809

    PubMed  CAS  Google Scholar 

  • Carney DF, Hammer CH, Shin ML (1986) Elimination of terminal complement complexes in the plasma membrane of nucleated cells: influence of extracellular Ca2+. J Immunol 137: 263–270

    PubMed  CAS  Google Scholar 

  • Carney DF, Lang Tl, Shin ML (1990) Multiple signal messengers generated by terminal complement complexes and their role in terminal complex elimination. J Immunol 145: 623–629

    PubMed  CAS  Google Scholar 

  • Casey PJ, Gilman AG (1988) G protein involvement in receptor-effector coupling. J Biol Chem 263: 2577–2580

    PubMed  CAS  Google Scholar 

  • Cheetham JJ, Chen RJB, Epand RM (1990) Interaction of calcium and cholesterol sulphate induces membrane destabilization and fusion: implications for the acrosome reaction. Biochim Biophys Acta 1024: 367–372

    Article  PubMed  CAS  Google Scholar 

  • Cikes M (1970) Antigenic expression of an immune lymphoma during growth in vitro. Nature 225: 645–646

    Article  PubMed  CAS  Google Scholar 

  • Cines DB, Schreiber AD (1979) Effect of anti-P1A1 antibody on human platelets. 1. The role of complement. Blood 53: 567–577

    PubMed  CAS  Google Scholar 

  • Colbran RJ, Schworer CM, Hasimoto Y, Fong Y-L, Rich DP, Smith KM, Soderling TR (1989) Calcium/calmodulin dependent protein kinase II. Biochem J 258: 313–325

    PubMed  CAS  Google Scholar 

  • Cooper NR, Polley MJ, Oldstone MBA (1974) Failure of terminal complement components to induce lysis of Moloney virus transformed lymphocytes. J Immunol 112: 866–868

    PubMed  CAS  Google Scholar 

  • Couser WG, Baker PJ, Adler S (1985) Complement and the direct mediation of immune glomerular injury: a new perspective. Kidney Int 28: 879–890

    Article  PubMed  CAS  Google Scholar 

  • Cox JA (1988) Interactive properties of calmodulin. Biochem J 249: 621–629

    PubMed  CAS  Google Scholar 

  • Cybulsky AV, Rennke HG, Feintzeig ID, Salant DJ (1986) Complement-induced glomerular epithelial cell injury. Role of the membrane attack complex in rat membranous nephropathy. J Clin Invest 77: 1096–1107

    Article  PubMed  CAS  Google Scholar 

  • Cybulsky AV, Salant D, Quigg RJ, Badalamenti J, Bonventre JV (1989) Complement C5b-9 complex activates phospholipases in glomerular epithelial cells. Am J Physiol 257: F826-F836

    PubMed  CAS  Google Scholar 

  • Cybulsky AV, Bonventre JV, Quigg RJ, Lieberthal W, Salant DJ (1990) Cytosolic calcium and protein kinase C reduce complement-mediated glomerular epithelial injury. Kidney Int 38: 803–811

    Article  PubMed  CAS  Google Scholar 

  • Daniels RH, Houston WA, Petersen MM, Williams JD, Williams BD, Morgan BP (1990a) Stimulation of rheumatoid synovial cells by non-lethal complement membrane attack. Immunology 69: 237–242

    PubMed  CAS  Google Scholar 

  • Daniels RH, Williams BD, Morgan BP (1990b) Human rheumatoid synovial cell stimulation by the membrane attack complex and other pore-forming toxins in vitro; the role of calcium in cell activation. Immunology 71: 312–316

    PubMed  CAS  Google Scholar 

  • Daniels RH, Williams BD, Morgan BP (1990c) Non-lethal complement membrane attack on cultured synovial cells induces G-protein and calcium-dependent PGE2 release and release of IL-6. Compl Inflamm 7: 137 (abstract)

    Google Scholar 

  • Ehrlich P, Morgenroth J (1899) Zur Theorie der Lysinwirkung. Berl Klin Wochenschr 36: 6–9

    Google Scholar 

  • Ferrone S, Cooper NR, Pellegrino MA, Reisfeld RA (1973) Interaction of histocompatibility (HLA) antibodies and complement with synchronized human lymphoid cells in continuous culture. J Exp Med 137: 55–68

    Article  PubMed  CAS  Google Scholar 

  • Fischelson Z, Kopf E, Paas Y, Ross L, Reiter Y (1989) Protein phosphorylation as a mechanism of resistance against complement damage. Prog Immunol 7: 205–210

    Google Scholar 

  • Goldberg B, Green H (1959) The cytotoxic action of immune gamma globulin and complement on Krebs ascites tumor cells. I. Ultrastructural studies. J Exp Med 109: 505–510

    Article  PubMed  CAS  Google Scholar 

  • Green H, Goldberg B (1960) The action of antibody and complement on mammalian cells. Ann NY Acad Sci 87: 352–361

    Article  PubMed  CAS  Google Scholar 

  • Green H, Barrow P, Goldberg B (1959) Effect of antibody and complement on permeability control in ascites tumor cells and erythrocytes. J Exp Med 110: 689–713

    Article  Google Scholar 

  • Groggel GC, Salant DJ, Darby C, Rennke HG, Couser WG (1985) Role of terminal complement pathway in the heterologous phase of antiglomerular basement membrane nephritis. Kidney Int 27: 643–651

    Article  PubMed  CAS  Google Scholar 

  • Hallett MB, Luzio JP, Campbell AK (1981) Stimulation of Ca2+-dependent chemiluminescence in rat polymorphonuclear leucocytes by polystyrene beads, and the non-lytic action of complement. Immunology 44: 569–577

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1–14

    PubMed  CAS  Google Scholar 

  • Hansch GM (1988) The homologous species restriction of complement attack: structure and function of the C8-binding protein. In: Podack ER (ed) Cytotoxic effector mechanisms. Springer, Berlin Heidelberg New York, pp 109–118 (Current topics in microbiology and immunology, vol 140)

    Google Scholar 

  • Hansch GM, Seitz M, Marinotti G, Betz M, Rauterberg EW, Shin ML (1984) Macrophages release arachidonic acid, prostaglandin E2, and thromboxane in response to late complement components. J Immunol 133: 2145–2150

    PubMed  CAS  Google Scholar 

  • Hansch GM, Seitz M, Betz M (1987) Effect of the late complement components C5b-9 on human monocytes: release of prostanoids, oxygen radicals and of a factor inducing cell proliferation. Int Arch Allergy Appl Immunol 82: 317–320

    Article  PubMed  CAS  Google Scholar 

  • Hansch GM, Betz M, Gunther J, Rother KO, Sterzel B (1988) The complement membrane attack complex stimulates the prostanoid production of cultured glomerular mesangial cells. Int Arch Allergy Appl Immunol 85: 87–93

    Article  PubMed  CAS  Google Scholar 

  • Hansch GM, Torbohm I, Rother K (1989) Chronic glomerulonephritis: inflammatory mediators stimulate the collagen synthesis in glomerular epithelial cells. Int Arch Allergy Appl Immunol 88: 139–143

    Article  PubMed  CAS  Google Scholar 

  • Imagawa DK, Barbour SE, Morgan BP, Wright TM, Hin HS, Ramm LE (1987) Role of complement C9 and calcium in the generation of arachidonic acid metabolites from rat polymorphonuclear leukocytes. Mol Immunol 24: 1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Stephens CL, Lecar H (1981) Single channel currents induced by complement in antibody-coated cell membranes. Proc Natl Acad Sci USA 79: 6421–6425

    Article  Google Scholar 

  • Jahn B, von Kempis J, Hansch GM (1990) Induction of prostaglandin E2 (PGE2) and collagenase synthesis in human synovial fibroblast-like cells (SFC) by terminal complement components C5b-9. Compl Inflamm 7: 138 (abstract)

    Google Scholar 

  • Kaliner M, Austen KF (1974) Adenosine 3′5-monophosphate: inhibition of complement mediated cell lysis. Science 183: 659–661

    Article  PubMed  CAS  Google Scholar 

  • Kerjaschki D, Schulze M, Binder S, Kain R, Ojha PP, Susani M, Horvat R, Baker PJ, Couser WG (1989) Transcellular transport and membrane insertion of the C5b-9 membrane attack complex of complement by glomerular epithelial cells in experimental membranous nephropathy. J Immunol 143: 546–552

    PubMed  CAS  Google Scholar 

  • Koski CL, Ramm LE, Hammer CH, Mayer MM, Shin ML (1983) Cytolysis of nucleated cells by complement. Cell death displays multi-hit characteristics. Proc Natl Acad Sci USA 80: 3816–3820

    Article  PubMed  CAS  Google Scholar 

  • Lachmann PJ, Coombs RR, Fell HB (1969) The breakdown of embryonic (chick) cartilage and bone cultivated in the presence of complement-sufficient antiserum. 3. Immunological analysis. Int Arch Allergy Appl Immunol 36: 469–485

    Article  PubMed  CAS  Google Scholar 

  • Lennon VA, Seybold ME, Lindstrom JM, Cochrane C, Ulevitch R (1978) Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 147: 973–983

    Article  PubMed  CAS  Google Scholar 

  • Levine YK (1972) Physical studies of membrane structure. Prog Biophys Mol Biol 24: 1–74

    Article  PubMed  CAS  Google Scholar 

  • Linscott WD (1970) An antigen density effect on the hemolytic efficiency of complement. J Immunol 104: 1307–1309

    PubMed  CAS  Google Scholar 

  • Lo TN, Boyle MDP (1979) Relationship between the intracellular cyclic adenosine 3′:5′-monophosphate level of tumor cells and their sensitivity to killing by antibody and complement. Cancer Res 39: 3156–3162

    PubMed  CAS  Google Scholar 

  • Lovett DH, Haensch GM, Goppelt M, Resch K, Gemsa F (1987) Activation of glomerular mesangial cells by the terminal membrane attack complex of complement. J Immunol 138: 2473–2480

    PubMed  CAS  Google Scholar 

  • Mayer MM (1961) Development of a one-hit theory of immune hemolysis. In: Heidelbeger M, Plescia DJ (eds) Immunochemical approaches to problems in microbiology. Rutgers, New Jersey, pp 268–279

    Google Scholar 

  • Mayer MM (1972) Mechanisms of cytolysis by complement. Proc Natl Acad Sci USA 69: 2954–2958

    Article  PubMed  CAS  Google Scholar 

  • Mayer MM, Imagawa DK, Ramm LE, Whitlow MB (1983) Membrane attack by complement and its consequences. Prog Immunol 5: 427–444

    Article  Google Scholar 

  • Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, Lachmann PJ (1990) Human protectin (CD59), an 18000–20000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into bilayers, Immunology 71: 1–9

    PubMed  CAS  Google Scholar 

  • Moller E, Moller G (1962) Quantitative studies of sensitivity of normal and neoplastic cells to the cytotoxic action of isoantibodies. J Exp Med 115: 27–534

    Article  Google Scholar 

  • Morgan BP (1984) The biochemistry and pathology of complement component C9. PhD thesis, University of Wales, pp 235–274

    Google Scholar 

  • Morgan BP (1988) Non-lethal complement membrane attack on human neutrophils: transient cell swelling and metabolic depletion. Immunology 63: 71–77

    PubMed  CAS  Google Scholar 

  • Morgan BP (1989a) Mechanisms of tissue damage by the membrane attack complex of complement. Compl Inflamm 6: 104–111

    CAS  Google Scholar 

  • Morgan BP (1989b) Complement membrane attack on nucleated cells: resistance, recovery and non- lethal effects. Biochem J 264: 1–14

    PubMed  CAS  Google Scholar 

  • Morgan BP (1990) Complement, clinical aspects and relevance to disease. Academic, London

    Google Scholar 

  • Morgan BP, Campbell AK (1985) The recovery of human polymorphonuclear leucocytes from sublytic complement attack is mediated by changes in intracellular free calcium. Biochem J 231: 205–208

    PubMed  CAS  Google Scholar 

  • Morgan BP, Campbell AK, Luzio JP, Hallett MB (1984) Recovery of polymorphonuclear leucocytes from complement attack. Biochem Soc Trans 12: 779–780

    CAS  Google Scholar 

  • Morgan BP, Imagawa DK, Dankert JR, Ramm LE (1986a) Complement lysis of U937, a nucleated mammalian cell line in the absence of C9: effect of C9 on C5b-8 mediated cell lysis. J Immunol 136: 3402–3406

    PubMed  CAS  Google Scholar 

  • Morgan BP, Luzio JP, Campbell AK (1986b) Intracellular Ca2+ and cell injury: a paradoxical role of Ca2+ in complement membrane attack. Cell Calcium 7: 399–411

    Article  PubMed  CAS  Google Scholar 

  • Morgan BP, Dankert JR, Esser AF (1987) Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol 138: 246–253

    PubMed  CAS  Google Scholar 

  • Morgan BP, Daniels RH, Williams BD (1988a) Measurement of terminal complement complexes in rheumatoid arthritis. Clin Exp Immunol 73: 473–478

    PubMed  CAS  Google Scholar 

  • Morgan BP, Daniels RH, Watts MJ, Williams BD (1988b) In vivo and in vitro evidence of cell recovery from complement attack in rheumatoid synovium. Clin Exp Immunol 73: 467–472

    PubMed  CAS  Google Scholar 

  • Nose M, Katoh M, Okada N, Kyogoku M, Okada H (1990) Tissue distribution of HRF20, a novel factor preventing the membrane attack of homologous complement, and its predomiant expression on endothelial cells in vivo. Immunology 70: 145–149

    PubMed  CAS  Google Scholar 

  • Nuttal G (1888) Experimente über die Bakterienfeindlichen Einflüsse des tierischen Körpers. Z Hyg Infektionskr 4: 353–356

    Article  Google Scholar 

  • Ohanian SH, Borsos T (1975) Lysis of tumor cells by antibody and complement. II. Lack of correlation between amount of C4 and C3 fixed and cell lysis. J Immunol 114: 1292–1295

    PubMed  CAS  Google Scholar 

  • Ohanian SH, Schlager SI (1981) Humoral immune killing of nucleated cells: mechanisms of complement-mediated attack and target cell defense. CRC Crit Rev Immunol 1: 165–209

    CAS  Google Scholar 

  • Ohanian SH, Schlager SI, Borsos T (1977) Molecular interactions of cells with antibody and complement, influence of metabolic and physical properties of the target on the outcome of humoral immune attack. Contemp Top Mol Immunol 7: 153–175

    Google Scholar 

  • Ohanian SH, Schlager SI, Yamazaki M, Ishida B (1979) Effect of specific phospholipids on the antibody-complement killing of nucleated cells. J Immunol 123: 1014–1019

    PubMed  CAS  Google Scholar 

  • Ohanian SH, Schlager SI, Saha S (1982) Effect of lipids, structural precursors of lipids and fatty acids on complement-mediated killing on antibody-sensitized nucleated cells. Mol Immunol 19: 535–542

    Article  PubMed  CAS  Google Scholar 

  • Podack ER, Muller-Eberhard HJ (1981) Complement-mediated membrane injury of tumor cells: release of membrane vesicles. Fed Proc 40: 359 (abstract)

    Google Scholar 

  • Pellegrino MA, Ferrone S, Cooper NR, Dierich MP, Reisenfeld RA (1974) Variation in susceptibility of a human lymphoid cell line to immune lysis during the cell cycle: lack of correlation with antigen density and complement binding. J Exp Med 140: 578–590

    Article  PubMed  CAS  Google Scholar 

  • Raisz LG, Sandberg AL, Goodson JM, Simmons HA, Mergenhagen SE (1974) Complement-dependent stimulation of prostaglandin synthesis and bone resorption. Science 185: 787–791

    Article  Google Scholar 

  • Ramm LE, Mayer MM (1980) Life span and size of the transmembrane channels formed by large doses of complement. J Immunol 124: 2281–2287

    PubMed  CAS  Google Scholar 

  • Ramm LE, Whitlow MB, Mayer MM (1982) Size of the transmembrane channels produced by complement proteins C5b-8. J Immunol 129: 1143–1146

    PubMed  CAS  Google Scholar 

  • Ramm LE, Whitlow MB, Mayer MM (1983a) Size distribution and stability of the transmembrane channels formed by complement complex C5b-9. Mol Immunol 20: 155–160

    Article  PubMed  CAS  Google Scholar 

  • Ramm LE, Whitlow MB, Koski CL, Shin ML, Mayer MM (1983b) Elimination of complement channels from the plasma membranes of U937, a nucleated mammalian cell line: temperature dependence of the elimination rate. J Immunol 131: 1411–1415

    PubMed  CAS  Google Scholar 

  • Ramm LE, Whitlow MB, Mayer MM (1984) Complement lysis of nucleated cells: effect of temperature and puromycin on the number of channels required for cytolysis. Mol Immunol 21: 1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Rauterberg EW (1987) Demonstration of complement deposits in tissues. In: Rother K, Till GO (eds) The complement system. Springer, Berlin Heidelberg New York, pp 287–326

    Google Scholar 

  • Richardson PJ, Luzio JP (1980) Complement-mediated production of plasma membrane vesicles from rat fat cells. Biochem J 186: 897–906

    PubMed  CAS  Google Scholar 

  • Roberts PA, Morgan BP, Campbell AK (1985) 2-chloroadenosine inhibits complement-induced reactive oxygen metabolite production and recovery of human polymorphonuclear leucocytes attacked by complement. Biochim Biophys Res Commun 126: 692–697

    Article  CAS  Google Scholar 

  • Rooney IA, Morgan BP (1990a) Protection of human amniotic epithelial cells (HAEC) from complement-mediated of three complement inhibitory membrane proteins. Immunology 71: 308–311

    PubMed  CAS  Google Scholar 

  • Rooney IA, Morgan BP (1990b) Non-lethal doses of antibody and complement stimulate release of prostaglandin E2 from human amniotic cells in vitro. Biochem Soc Trans 18: 617

    PubMed  CAS  Google Scholar 

  • Rooney IA, Davies A, Griffiths D, Williams JD, Davies M, Meri S, Lachmann PJ, Morgan BP (1991) The complement inhibiting protein, protectin (CD59 antigen) is present and functionally active on glomerular epithelial cells. Clin Exp Immunol 83: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Salant DJ, Quigg RJ, Cybulsky AV (1989) Heymann nephritis: mechanisms of renal injury. Kidney Int 35: 976–990

    Article  PubMed  CAS  Google Scholar 

  • Salmon JA, Higgs GA (1987) Prostaglandins and leukotrienes as inflammatory mediators. Br Med Bull 43: 285–296

    PubMed  CAS  Google Scholar 

  • Sandberg AL, Raisz LG, Goodson MJ, Simmons HA, Mergenhagen SE (1977) Limitation of bone resortion by the classical and alternative pathways and its mediation by prostaglandin. J Immunol 119: 1378–1381

    PubMed  CAS  Google Scholar 

  • Sanders ME, Kopicky JA, Wigley FM, Shin ML, Frank MM, Joiner KA (1986) Membrane attack complex of complement in rheumatoid synovial tissue demonstrated by immunofluorescent microscopy. J Rheumatol 13: 1028–1034

    PubMed  CAS  Google Scholar 

  • Schlager SI, Ohanian SH, Borsos T (1976) Inhibition of antibody-complement mediated killing of tumor cells by hormones. Cancer Res 36: 3672–3677

    PubMed  CAS  Google Scholar 

  • Scolding NJ, Houston WAJ, Morgan BP, Campbell AK, Compston DAS (1989a) Reversible injury of cultured rat oligodendrocytes by complement. Immunology 67: 441–446

    PubMed  CAS  Google Scholar 

  • Scolding NJ, Morgan BP, Houston WAJ, Linington C, Campbell AK, Compston DAS (1989b) Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature 339: 620–622

    Article  PubMed  CAS  Google Scholar 

  • Scolding NJ, Morgan BP, Frith S, Campbell AK, Compston DAS (1990) Intracellular calcium and oligodendrocyte injury. J Neurol Neurosurg Psychiatry 53: 811 (abstract)

    Google Scholar 

  • Seeger W, Suttorp N, Helliwig A, Bhakdi S (1986) Noncytolytic complement complexes may serve as calcium gates to elicit leukotriene B4 generation in human polymorphonuclear leukocytes. J Immunol 137: 1286–1293

    PubMed  CAS  Google Scholar 

  • Segerling MS, Ohanian SH, Borsos T (1975a) Chemotherapeutic drugs increase killing of tumor cells by antibody and complement. Science 188: 55–57

    Article  PubMed  CAS  Google Scholar 

  • Segerling MS, Ohanian SH, Borsos T (1975b) Enhancing effect by metabolic inhibitors on the killing of tumour cells by antibody and complement. Cancer Res 35: 3195–3203

    PubMed  CAS  Google Scholar 

  • Shin ML, Paznekas WA, Mayer MM (1978) On the mechanism of membrane damage by complement: the effect of length and saturation of the acyl chains in liposomal bilayers and the effect of cholesterol concentration in sheep erythrocytes and liposomal membranes. J Immunol 120: 1996–2002

    PubMed  CAS  Google Scholar 

  • Shirazi Y, Imagawa DK, Shin ML (1987) Release of leukotriene B4 from sublethally injured oligodendrocytes by terminal complement complexes. J Neurochem 48: 271–278

    Article  PubMed  CAS  Google Scholar 

  • Shirazi Y, McMorris FA, Shin ML (1989) Arachidonic acid mobilization and phosphoinositide turnover by the terminal complement complex, C5b-9, in rat oligodendrocyte × C6 glioma cell hybrids. J Immunol 142: 4385–4391

    PubMed  CAS  Google Scholar 

  • Shirazi Y, Macklin WB, Shin ML (1990) Terminal complement complexes (TCC) inhibit myelin protein mRNA expression in oligodendrocytes (OLG). FASEB J 4: A2017 (abstract)

    Google Scholar 

  • Sims PJ, Weidmer T (1986) Repolarization of the membrane potential of blood platelets after complement damage: evidence for a Ca2+-dependent exocytic elimination of C5b-9 pores. Blood 68: 556–561

    PubMed  CAS  Google Scholar 

  • Slater TF (1984) Free-radical mechanisms in tissue injury. Biochem J 222: 1–15

    PubMed  CAS  Google Scholar 

  • Smith WL (1989) The eicösanoids and their biochemical mechanisms of action. Biochem J 259: 315–324

    PubMed  CAS  Google Scholar 

  • Stein JM, Luzio JP (1990) Ectocytosis caused by sublytic autologous complement attack on human neutrophils: the sorting of endogenous plasma membrane proteins and lipids into shed vesicles. Biochem J 274: 381–386

    Google Scholar 

  • Stephens CL, Henkart PA (1979) Electrical measurements of complement-mediated membrane damage in cultured nerve and muscle cells. J Immunol 122: 455–458

    PubMed  CAS  Google Scholar 

  • Suttorp N, Seeger W, Zinsky S, Bhakdi S (1987a) Complement complex C5b-8 induces PGI2 formation in cultured endothelial cells. Am J Physiol 253: C13–21

    PubMed  CAS  Google Scholar 

  • Suttorp N, Seeger W, Zucker-Reimann J, Roka L, Bhakdi S (1987b) Mechanism of leukotriene generation in polymorphonuclear leukocytes by staphylococcal alpha-toxin. Infect Immun 55: 104–110

    PubMed  CAS  Google Scholar 

  • Taylor CW (1990) The role of G proteins in transmembrane signalling. Biochem J 272: 1–13

    PubMed  CAS  Google Scholar 

  • Thielens NM, Lohner K, Esser AF (1988) Human complement component C9 is a calcium binding protein: structural and functional implications. J Biol Chem 263: 6665–6670

    PubMed  CAS  Google Scholar 

  • Torbohm I, Schonermark M, Wingen AM, Berger B, Rother K, Hansch GM (1990) C5b-8 and C5b-9 modulate the collagen release of human glomerular epithelial cells. Kidney Int 37: 1098–1104

    Article  PubMed  CAS  Google Scholar 

  • Von Kempis J, Torbohm I, Schonermark M, Jahn B, Seitz M, Hansch GM (1989) Effect of the late complement components C5b-9 and of platelet-derived growth factor on the prostaglandin release of human synovial fibroblast-like cells. Int Arch Allergy Appl Immunol 90: 248–255

    Article  Google Scholar 

  • Wiegard R, Betz M, Hansch GM (1988) Nystatin stimulates prostaglandin E synthesis and formation of diacylglycerol in human monocytes. Agents Actions 24: 243–250

    Article  Google Scholar 

  • Yoo TJ, Chin HC, Spector AA, Whitaker RJ, Denning CM, Lee NF (1980) Effect of fatty acid modifications of cultured hepatoma cells on susceptibility to complement-mediated cytolysis. Cancer Res 40: 1084–1090

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morgan, B.P. (1992). Effects of the Membrane Attack Complex of Complement on Nucleated Cells. In: Parker, C.J. (eds) Membrane Defenses Against Attack by Complement and Perforins. Current Topics in Microbiology and Immunology, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77014-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77014-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77016-6

  • Online ISBN: 978-3-642-77014-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics