Skip to main content

Genetic Diversity and Evolution of Retroviruses

  • Chapter

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY,volume 176)

Abstract

Retroviruses are one of the most widespread and probably the most biologically diverse group of infectious agents of vertebrates. Virtually all mammals—as well as some birds, reptiles, and fish—have yielded infectious retroviruses when examined sufficiently closely. Within a species, the viruses isolated can display considerable diversity of biological properties. For example, within the group of closely related murine leukemia viruses are found agents which differ in receptors used for infection; in mode of transmission for genetic (as endogenous germline proviruses) to horizontal and vertical (via milk or infection in utero); in pathogenicity from benign to highly virulent; and in disease spectrum from a variety of malignancies of varying latency to immunodeficiencies, anemias, neurological diseases, and others.

Keywords

  • Human Immunodeficiency Virus Type
  • Relative Growth Rate
  • Murine Leukemia Virus
  • Virus Population
  • Rous Sarcoma Virus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-77011-1_10
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-77011-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alizon M, Wain-Hobson S, Montagnier L, Sonigo P (1986) Genetic variability of the AIDS virus: nucleotide sequence analysis of two isolates from African patients. Cell 46: 63–74

    PubMed  CAS  CrossRef  Google Scholar 

  • Bass BL, Weintraub H, Cattaneo R, Billeter MA (1989) Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell 56: 331

    PubMed  CAS  CrossRef  Google Scholar 

  • Batschelet E, Domingo E, Weissmann C (1976) The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1: 27–32

    PubMed  CAS  CrossRef  Google Scholar 

  • Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52: 301–354

    PubMed  CAS  CrossRef  Google Scholar 

  • Bishop JM (1991) Molecular themes in oncogenesis. Cell 64: 235–248

    PubMed  CAS  CrossRef  Google Scholar 

  • Bishop JM, Varmus HE (1982) Functions and origins of retroviral transforming genes. In: Weiss R, Teich N, Varmus H, Coffin J (eds.) RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 999–1108

    Google Scholar 

  • Bova CA, Manfredi JP, Swanstrom R (1986) Genes of avian retroviruses: Nucleotide sequence and molecular recombinants define host range determinants. Virology 152: 343–354

    PubMed  CAS  CrossRef  Google Scholar 

  • Bova CA, Olsen JC, Swanstrom R (1988) The avian retrovirus env gene family: Molecular analysis of host range and antigenic variants. J Virol 62: 75–83

    PubMed  CAS  Google Scholar 

  • Chattopadhyay SK, Cloyd MW, Linemeyer DL, Lander MR, Rands E, Lowy DR (1982) Cellular origin and role of mink cell focus-forming viruses in murine thymic lymphomas. Nature 295: 25–31

    PubMed  CAS  CrossRef  Google Scholar 

  • Chattopadhyay SK, Baroudy BM, Holmes KL, Frederickson TN, Lander MR, Hartley HCM Ill, Hartley JW (1989) Biological and molecular genetic characteristics of a unique MCF virus that is highly leukemogenic in ecotropic virus-negative mice. Virology 168: 90–100

    PubMed  CAS  CrossRef  Google Scholar 

  • Coffin JM (1979) Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 42: 1–26

    PubMed  CAS  CrossRef  Google Scholar 

  • Coffin JM (1986) Genetic variation in AIDS viruses. Cell 46: 1–14

    PubMed  CAS  CrossRef  Google Scholar 

  • Coffin JM (1990) Genetic variation in retroviruses. In: Kurstak E, Marusyk RG, Murphy FA, Van Regenmortel MHV (eds) Applied Virology Research. Volume 2: Virus Variability, Epidemiology, and Control, Plenum, New York, pp 11–33

    Google Scholar 

  • Coffin JM (1990b) Retroviridae and their replication. In: Fields B, Knipe D, Chanock R (eds) Virology, 2nd ed. Raven, New York, pp 1437–1500

    Google Scholar 

  • Coffin JM, Tsichlis PN, Barker CS, Voynow S (1980) Variation in avian retrovirus genomes. Ann NY Acad Sci 354: 410–425

    PubMed  CAS  CrossRef  Google Scholar 

  • Colicelli J, Goff SP (1987) Identification of endogenous retroviral sequences as potential donors for recombinational repair of mutant retroviruses: Positions of crossover points. Virology 160: 518–522

    PubMed  CAS  CrossRef  Google Scholar 

  • Cordonnier A, Montagnier L, Emerman M (1989) Single amino-acid changes in HIV envelope affect viral tropism and receptor binding. Nature 340: 571–574

    PubMed  CAS  CrossRef  Google Scholar 

  • Danos O, Mulligan RC (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci USA 85: 6460–6464

    PubMed  CAS  CrossRef  Google Scholar 

  • Delassus S, Cheynier R, Wain-Hobson S (1991) Evolution of human immunodeficiency virus type 1 nef and long terminal repeat sequences over 4 years in vivo and in vitro. J Virol 65: 225–231

    PubMed  CAS  Google Scholar 

  • Doggett DL, Drake AL, Hirsch V, Rowe ME, Stallard V, Mullins JI (1989) Structure, origin and transforming activity of feline leukemia virus-myc recombinant provirus FTT. J Virol 63: 2108–2117

    PubMed  CAS  Google Scholar 

  • Doolittle RF, Feng D-F, Johnson MS, McClure MA (1989) Origins and evolutionary relationships of retroviruses. Q Rev Biol 64: 1–30

    PubMed  CAS  CrossRef  Google Scholar 

  • Doolittle RF, Feng DF, McClure MA, Johnson MS (1990) Retrovirus phylogeny and evolution. In: Swanstrom R, Vogt PK (eds) Retroviruses. Strategies of replication. Springer, Berlin Heidelberg New York, pp 1–18

    Google Scholar 

  • Dorner AJ, Coffin JM (1986) Determinants for receptor interaction and cell killing on the avian retrovirus glycoprotein gp85. Cell 45: 365–374

    PubMed  CAS  CrossRef  Google Scholar 

  • Dorner Ad, Stoye JP, Coffin JM (1985) Molecular basis of host range variation in avian retroviruses. J Virol 53: 32–39

    Google Scholar 

  • Dougherty JP, Temin HM (1988) Determination of the rate of base-pair substitution and insertion mutations in retrovirus replication. J Virol 62: 2817–2822

    PubMed  CAS  Google Scholar 

  • Dougherty JP, Wisniewski R, Yang S, Rhode BW, Temin HM (1989) New retrovirus helper cells with almost no nucleotide sequence homology to retrovirus vectors. J Virol 63: 3209–3212

    PubMed  CAS  Google Scholar 

  • Freed EO, Myers DJ, Risser R (1991) Identification of the principal neutralizing determinant of human immunodeficiency virus type 1 as a fusion domain. J Virol 65: 190–194

    PubMed  CAS  Google Scholar 

  • Goldfarb MP, Weinberg RA (1981) Generation of novel, biologically active Harvey sarcoma viruses via apparent illegitimate recombination. J Virol 38: 136–150

    PubMed  CAS  Google Scholar 

  • Golemis EA, Speck NA, Hopkins N (1990) Alignment of U3 region sequences of mammalian type C viruses: identification of highly conserved motifs and implications for enhancer design. J Virol 64: 534–542

    PubMed  CAS  Google Scholar 

  • Goodrich DW, Duesberg PH (1990) Evidence that retroviral transduction is mediated by DNA, not by RNA. Proc Natl Acad Sci USA 87: 3604–3608

    PubMed  CAS  CrossRef  Google Scholar 

  • Gopinathan KP, Weymouth LA, Kunkel TA, Loeb LA (1979) Mutagenesis in vitro by DNA polymerase from an RNA tumor virus. Nature 278: 857–859

    PubMed  CAS  CrossRef  Google Scholar 

  • Griffiths JC, Berrie EL, Holdsworth LN, Moore JP, Harris SJ, Senior JM, Kingsman SM, Kingsman AJ, Adams SE (1991) Induction of high-titer neutralizing antibodies, using hybrid human immunodeficiency virus V3-Ty viruslike particles in a clinically relevant adjuvant. J Virol 65: 450–456

    PubMed  CAS  Google Scholar 

  • Gross L (1951) “Spontaneous” leukemia developing in C3H mice following inoculation, in infancy, with AK-leukemic-cell extracts, or AK-embryos. Proc Soc Exp Biol Med 76: 27–32

    PubMed  CAS  Google Scholar 

  • Hahn BH, Gonda MA, Shaw GM, Popovic M, Hoxie JA, Gallo RC, Wong-Staal F (1985) Genomic diversity of the acquired immune deficiency syndrome virus HTLV-III: different viruses exhibit greatest divergence in their envelope genes. Proc Natl Acad Sci USA 82: 4813–4817

    PubMed  CAS  CrossRef  Google Scholar 

  • Hahn BH, Shaw GM, Taylor ME, Redfield RR, Markham PD, Salahuddin SZ, Wong-Staal F, Gallo RC, Parks ES, Parks WP (1986) Genetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS. Science 232: 1548–1553

    PubMed  CAS  CrossRef  Google Scholar 

  • Hartley JW, Wolford NK, Old LJ, Rowe WP (1977) A new class of murine leukemia virus associated with the development of spontaneous lymphomas. Proc Natl Acad Sci USA 74: 789–792

    PubMed  CAS  CrossRef  Google Scholar 

  • Helseth E, Oshevsky U, Gabuzda D, Ardman B, Haseltine W, Sodroski J (1990) Changes in the transmembrane region of the human immunodeficiency virus type 1 gp41 envelope glycoprotein affect membrane fusion. J Virol 64: 6314–6318

    PubMed  CAS  Google Scholar 

  • Herman SA, Coffin JM (1986) Differential transcription from the long terminal repeats of integrated avian leukosis virus DNA. J Virol 60: 497–505

    PubMed  CAS  Google Scholar 

  • Herman SA, Coffin JM (1987) Efficient packaging of readthrough RNA in ALV: Implications for oncogene transduction. Science 236: 845–848

    PubMed  CAS  CrossRef  Google Scholar 

  • Hirsch VM, Edmondson P, Murphey-Corb M, Arbeille B, Johnson PR, Mullins JI (1989) SIV adaptation to human cells. Nature 341: 573–574

    PubMed  CAS  CrossRef  Google Scholar 

  • Hoggan MD, O’Neill RR, Kozak CA (1986) Nonecotropic murine leukemia viruses in BALB/c and NFS/N mice: Characterization of the BALB/c Bxv-1 provirus and the single NFS endogenous xenotrope. J Virol 60: 980–986

    PubMed  CAS  Google Scholar 

  • Holland CA, Thomas CY, Chattopadhyay SK, Koehne C, O’Donnell PV (1989) Influence of enhancer sequences of thymotropism and leukemogenicity of mink cell focus-forming viruses. J Virol 63: 1284–1292

    PubMed  CAS  Google Scholar 

  • Holland JJ, de la Torre JC,. Steinhauer DA, Clark D, Duarte E, Domingo E (1989) Virus mutation frequencies can be greatly underestimated by monoclonal antibody neutralization of virions. J Virol 63: 5030–5036

    PubMed  CAS  Google Scholar 

  • Holland JJ, Domingo E, de la Torre JC, Steinhauer DA (1990) Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol 64: 3960–3962

    PubMed  CAS  Google Scholar 

  • Hu WS, Temin HM (1990a) Retroviral recombination and reverse transcription. Science 250: 1227–1233

    CAS  CrossRef  Google Scholar 

  • Hu WS, Temin HM (1990b) Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci USA 87:1556–1560

    CAS  CrossRef  Google Scholar 

  • Huet T, Cheynier R, Meyerhans A, Roelants G, Wain-Hobson S (1990) Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature 345: 356–359

    PubMed  CAS  CrossRef  Google Scholar 

  • Japour AJ, Chatis PA, Eigenrauch HA, Crumpacker CS (1991) Detection of human immunodeficiency virus type 1 clinical isolates with reduced sensitivity to zidovudine and dideoxyinosine by RNA-RNA hybridization. Proc Natl Acad Sci USA 88: 3092–3096

    PubMed  CAS  CrossRef  Google Scholar 

  • Junghans RP, Boone LR, Skalka AM (1982) Retroviral DNA H structures: Displacement-assimilation model of recombination. Cell 30: 53–62

    PubMed  CAS  CrossRef  Google Scholar 

  • Kodama T, Wooley DP, Naidu YM, Kestler HWI, Daniel MD, Li Y, Desrosiers RC (1989) Significance of premature stop codons in env of simian immunodeficiency virus. J Virol 63: 4709–4714

    PubMed  CAS  Google Scholar 

  • Larder BA, Kemp SD (1989) Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246: 1155–1158

    PubMed  CAS  CrossRef  Google Scholar 

  • Larder BA, Darby G, Richman DD (1989) HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243: 1731–1734

    PubMed  CAS  CrossRef  Google Scholar 

  • Lee YMH, Coffin JM (1990) Efficient autointegration of avian retrovirus DNA in vitro. J Virol 64: 5958–5965

    PubMed  CAS  Google Scholar 

  • Leider JM, Palese P, Smith Fl (1988) Determination of the mutation rate of a retrovirus. J Virol 62: 3084–3091

    PubMed  CAS  Google Scholar 

  • Li J-P, Baltimore D (1991) Mechanism of leukemogenesis induced by mink cell focus-forming murine leukemia viruses. J Virol 65: 2408–2414

    PubMed  CAS  Google Scholar 

  • Li Y, Golemis E, Hartley JW, Hopkins N (1987) Disease specificity of nondefective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J Virol 61: 693–700

    PubMed  CAS  Google Scholar 

  • Linial ML, Miller AD (1990) Retroviral RNA packaging: Sequence requirements and implications. In: Swanstrom R, Vogt PK (eds) Retroviruses. Strategies of replication. Springer, Berlin Heidelberg New York, pp 125–152

    Google Scholar 

  • Massey AC, Coppola MA, Thomas CY (1990) Origin of pathogenic determinants of recombinant murine leukemia viruses: analysis of Bxv-1-related xenotropic viruses from CWD mice. J Virol 64: 5491–5499

    PubMed  CAS  Google Scholar 

  • McClure MA (1991) Sequence analysis of eukaryotic retroid proteins. Adv Math Comp Med (in press)

    Google Scholar 

  • McClure MA, Johnson MS, Feng D-F, Doolittle RF (1988) Sequence comparisons of retroviral proteins: relative rates of change and general phylogeny. Proc Natl Acad Sci USA 85: 2469–2473

    PubMed  CAS  CrossRef  Google Scholar 

  • Meyerhans A, Cheynier R, Albert J, Seth M, Kwok S, Sninsky J, Morfeldt-Manson L, Asjo B, Wain-Hobson S (1989) Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell 58: 901–910

    PubMed  CAS  CrossRef  Google Scholar 

  • Miller AD, Buttimore C (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 6: 2895–2902

    PubMed  CAS  Google Scholar 

  • Myers G, Rabson AB, Josephs SF, Smith TF, Berzofsky JA, Wong-Staal F (1990) Human retroviruses and AIDS 1990. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • Nara PL, Smit L, Dunlop N, Hatch W, Merges M, Waters D, Kelliher J, Gallo RC, Fischinger PJ, Goudsmit J (1990) Emergence of viruses resistant to neutralization by V3-specific antibodies in experimental human immunodeficiency virus type 1 IIIB infection of chimpanzees. J Virol 64: 3779–3791

    PubMed  CAS  Google Scholar 

  • O’Brien WA, Koyanagi Y, Namazie A, Zhao J-Q, Dagne A, Idler K, Zack JA, Chen ISY (1990) HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4binding domain. Nature 348: 69–73

    PubMed  CrossRef  Google Scholar 

  • Olsen JC, Bova-Hill C, Grandgenett DP, Quinn TP, Manfredi JP, Swanstrom R (1990) Rearrangements in unintegrated retroviral DNA are complex and are the result of multiple genetic determinants. J Virol 64: 5475–5484

    PubMed  CAS  Google Scholar 

  • Parvin JD, Moscona A, Pan WT, Leider JM, Palese P (1986) Measurement of the mutation rates of animal viruses: influenza A and poliovirus type 1. J Virol 59: 377–383

    PubMed  CAS  Google Scholar 

  • Pathak VK, Temin HM (1990a) Broad spectrum of in vivo forward mutations, hypermutations and mutational hotspots in a retroviral shuttle vector after a single replication cycle: Deletions and deletions with insertions. Proc Natl Acad Sci USA 87: 6024–6028

    CAS  CrossRef  Google Scholar 

  • Pathak VK, Temin HM (1990b) Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: Substitutions, frameshifts and hypermutations. Proc Natl Acad Sci USA 87: 6019–6023

    CAS  CrossRef  Google Scholar 

  • Preston BD, Poiesz BJ, Loeb LA (1988) Fidelity of HIV-1 reverse transcriptase. Science 242: 1168–1171

    PubMed  CAS  CrossRef  Google Scholar 

  • Rein A (1982) Interference grouping of murine leukemia viruses: A distinct receptor for MCFrecombinant viruses in mouse cells. Virology 120: 251–257

    PubMed  CAS  CrossRef  Google Scholar 

  • Repaske R, Steele PE, O’Neill RR, Rabson AB, Martin MA (1985) Nucleotide sequence of a full-length human endogenous retroviral segment. J Virol 54: 764–772

    PubMed  CAS  Google Scholar 

  • Roberts JD, Bebenek K, Kunkel TA (1988) The accuracy of reverse transcriptase from HIV-1. Science 242: 1171–1173

    PubMed  CAS  CrossRef  Google Scholar 

  • Roberts JD, Preston BD, Johnston LA, Soni A, Loeb LA, Kunkel T (1989) Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro. Mol Cell Biol 9: 469–476

    PubMed  CAS  Google Scholar 

  • Shioda T, Levy JA, Cheng-Mayer C (1991) Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature 349: 167–169

    PubMed  CAS  CrossRef  Google Scholar 

  • Shoemaker CS, Goff S, Gilboa E, Paskind M, Mitra SW, Baltimore D (1980) Structure of a cloned circular Moloney murine leukemia virus molecule containing an inverted segment: Implications for retrovirus integration. Proc Natl Acad Sci USA 77: 3932–3936

    PubMed  CAS  CrossRef  Google Scholar 

  • Smith DB, Inglis SC (1987) The mutation rate and variability of eukaryotic viruses: An analytical review. J Gen Virol 68: 2729–2740

    PubMed  CAS  CrossRef  Google Scholar 

  • Smith TF, Srinivasan A, Schochetman G, Marcus M, Myers G (1988) The phylogenetic history of immunodeficiency viruses. Nature 333: 573–575

    PubMed  CAS  CrossRef  Google Scholar 

  • Speck NA, Baltimore D (1987) Six distinct nuclear factors interact with the 75-base-pair repeat of the Moloney murine leukemia virus enhancer. Mol Cell Biol 7: 1101–1110

    PubMed  CAS  Google Scholar 

  • Speck NA, Renjifo B, Hopkins N (1990) Point mutations in the Moloney murine leukemia virus enhancer identify a lymphoid-specific viral core motif and 1,3-phorbol myristate acetate-inducible element. J Virol 64: 543–550

    PubMed  CAS  Google Scholar 

  • Stoye JP, Coffin JM (1987) The four classes of endogenous murine leukemia virus: Structural relationships and potential for recombination. J Virol 61: 2659–2669

    PubMed  CAS  Google Scholar 

  • Stoye JP, Moroni C, Coffin J (1991a) Virological events leading to spontaneous AKR thymomas. J Virol 65: 1273–1285

    CAS  Google Scholar 

  • Swain A, Coffin JM (1989) Polyadenylation at correct sites in genome RNA is not required for retrovirus replication or genome encapsidation. J Virol 63: 3301–3306

    PubMed  CAS  Google Scholar 

  • Swain A, Coffin JM (1991) Mechanism of oncogene transduction by retroviruses. Science (in press)

    Google Scholar 

  • Swanstrom R, Parker RC, Varmus HE, Bishop JM (1983) Transduction of a cellular oncogene: The genesis of Rous sarcoma virus. Proc Natl Acad Sci USA 80: 2519–2523

    PubMed  CAS  CrossRef  Google Scholar 

  • Taylor BA, Rowe L, Jenkins NA, Copeland NG (1985) Chromosomal assignment of two endogenous ecotropic murine leukemia virus proviruses of AKR/J mouse strains. J Virol 56: 172–175

    PubMed  CAS  Google Scholar 

  • Thomas CY, Coffin JM (1982) Genetic alteration of RNA leukemia viruses associated with development of spontaneous thymic lymphoma in AKR/J mice. J Virol 50: 397–407

    Google Scholar 

  • Varmus HE (1987) Reverse transcription. Sci Am 257: 56–66

    PubMed  CAS  CrossRef  Google Scholar 

  • Varmus H (1988) Retroviruses. Science 240: 1427–1435

    CAS  Google Scholar 

  • Varmus HE, Swanstrom R (1984) Replication of retroviruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses, 2nd ed, pt 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 369–512

    Google Scholar 

  • Varmus HE, Swanstrom R (1985) Replication of retroviruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 74–134

    Google Scholar 

  • Vartanian J-P, Meyerhans A, Asjo B, Wain-Hobson S (1991) Selection, recombination, and G-A hypermutation of human immunodeficiency virus type 1 genomes. J Virol 65: 1779–1788

    PubMed  CAS  Google Scholar 

  • Voynow SL, Coffin JM (1985a) Evolutionary variants of Rous sarcoma virus: Large deletion mutants do not result from homologous recombination. J Virol 55: 67–78

    CAS  Google Scholar 

  • Voynow SL, Coffin JM (1985b) Truncated gag-related proteins are produced by large deletion mutants of Rous sarcoma virus and form virus particles. J Virol 55: 79–85

    CAS  Google Scholar 

  • Weiss RA (1982) Experimental biology and assay of RNA tumor viruses. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 209–260

    Google Scholar 

  • Wong-Staal F, Shaw GM, Hahn BH, Salahuddin SZ, Popovic M, Markham P, Redfield R, Gallo RC (1985) Genomic diversity of human T-lymphotropic virus type II (HTLV-III). Science 229: 759–762

    PubMed  CAS  CrossRef  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based on their reverse transcriptase sequences. EMBO J 9: 3353–3362

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Coffin, J.M. (1992). Genetic Diversity and Evolution of Retroviruses. In: Holland, J.J. (eds) Genetic Diversity of RNA Viruses. Current Topics in Microbiology and Immunology, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77011-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77011-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77013-5

  • Online ISBN: 978-3-642-77011-1

  • eBook Packages: Springer Book Archive