Skip to main content

Monitoring der myokardialen Pumpfunktion — Methoden und ihr Stellenwert

  • Chapter
Der kardiale Risikopatient in der operativen Medizin

Zusammenfassung

Das Herzzeitvolumen (HZV) wird durch die 4 Faktoren Vorlast, Nachlast, Kontraktilität und Herzfrequenz beeinflußt. Für das Monitoring der myokardialen Pumpfunktion ergeben sich hieraus 2 Ansatzpunkte:

  1. 1)

    Man kann das HZV direkt messen.

  2. 2)

    Man kann versuchen, die Determinanten des HZV zu quantifizieren. Allerdings erlaubt erst die Kombination der beiden Ansätze Aussagen über den Funktionszustand des Myokards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abrams JH, Weber RE, Holmen KD (1989) Continuous cardiac output determination using transtracheal doppler: Initial results in humans. Anesthesiology 71: 11–15

    Article  PubMed  CAS  Google Scholar 

  2. Appel PL, Kram HB, Mackabee J, Fleming AW, Shoemaker WC (1986) Comparison of measurements of cardiac output by bioimpedance and thermodilution in severely ill surgical patients. Crit Care Med 14: 933–935

    Article  PubMed  CAS  Google Scholar 

  3. Assmann R, Falke KJ (1988) Pressure and volume assessment of right ventricular function during mechanical ventilation. Intensive Care Med 14: 467–470

    Article  PubMed  Google Scholar 

  4. Baan J, Aouw Jong TT, Kerkhof PLM, Moene RJ, Dijk AD van, Velde ET van der, Koops J (1981) Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res 15: 328–334

    Article  PubMed  CAS  Google Scholar 

  5. Baan J, Velde ET van der, de Bruin HG et al. (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70: 812–823

    Article  PubMed  CAS  Google Scholar 

  6. Badgwell JM, Heavner JE (1990) Alveolar dead space does not affect indirect Fick cardiac output determinations. J Appl Physiol 68: 787–791

    PubMed  CAS  Google Scholar 

  7. Bernstein DP (1986) A new stroke volume equation for thoracic electrical bioimpedance. Theory and rationale. Crit Care Med 14: 904–909

    Article  PubMed  CAS  Google Scholar 

  8. Bjoraker DG, Ketcham TR (1983) Catheter thrombus artifactually decreases thermodilution cardiac output measurements. Anesth Analg 62: 1031–1034

    Article  PubMed  CAS  Google Scholar 

  9. Boettcher DH, Vatner SF, Heyndrickx GR, Braunwald E (1978) Extent of utilization of the Frank-Starling mechanism in conscious dogs. Am J Physiol 234: H338 - H345

    PubMed  CAS  Google Scholar 

  10. Boltwood CM Jr, Appleyard RF, Glantz SA (1989) Left ventricular volume measurement by conductance catheter in intact dogs. Parallel conductance volume depends on left ventricular size. Circulation 80: 1360–1377

    Article  PubMed  Google Scholar 

  11. Borow KM, Neumann A, Wyne J (1982) Sensitivity of end-systolic pressure-dimension and pressure-volume relations to the inotropic state in humans. Circulation 65: 988–997

    Article  PubMed  CAS  Google Scholar 

  12. Brienza A, Dambrosio M, Bruno F, Lagioia V, Marucci M, Belpiede G, Guiliani R (1988) Right ventricular ejection fraction measurement in moderate acute respiratory failure (ARF). Effects of PEEP. Intensive Care Med 14: 478–482

    Google Scholar 

  13. Brown KA, Ditchey RV (1988) Human right ventricular end-systolic pressure-volume relation defined by maximal elastance. Circulation 78: 81–91

    Article  PubMed  CAS  Google Scholar 

  14. Cahalan MK, Litt L, Botvinick EH, Schiller NB (1987) Advances in noninvasive cardiovascular imaging: implications for the anesthesiologist. Anesthesiologist 66: 356–372

    Article  CAS  Google Scholar 

  15. Calvin JE, Driedger AA, Sibbald WJ (1981) Does the pulmonary capillary wedge pressure predict left ventricular preload in critically ill patients? Crit Care Med 9: 437–443

    Article  PubMed  CAS  Google Scholar 

  16. Calvin JE, Sibbald WJ (1990) Applied cardiovascular physiology in the critically ill with special reference to diastole and ventricular interaction. In: Shoemaker WC (ed) Textbook of critical care. Saunders, Philadelphia, pp 312–326

    Google Scholar 

  17. Carlile PV (1985) Pitfalls in the interpretation of hemodynamic data. Prog Crit Care Med 2: 69–86

    Google Scholar 

  18. Castor G, Molter G, Helms J, Niedermark I, Altmayer P (1990) Determination of cardiac output during positive end-expiratory pressure–noninvasive electrical bioimpedance compared with standard thermodilution. Crit Care Med 18: 544–546

    Article  PubMed  CAS  Google Scholar 

  19. Davies G, Hess D, Jebson P (1987) Continuous Fick cardiac output compared to continuous pulmonary artery electromagnetic flow measurement in pigs. Anesthesiology 66: 805–809

    Article  PubMed  CAS  Google Scholar 

  20. Davies GG, Jebson PJR, Glasgow BM, Hess DR (1986) Continuous Fick cardiac output compared to thermodilution cardiac output. Crit Care Med 14: 881–885

    Article  PubMed  CAS  Google Scholar 

  21. De Maria EJ, Burchard KW, Carlson DE, Gann DS (1990) Continuous measurement of atrial volume with an impedance catheter during positive pressure ventilation and volume expansion. Surg Gynecol Obstet 170: 501–509

    Google Scholar 

  22. Dhainaut JF, Brunet F, Monsallier JF et al. (1987) Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit Care Med 15: 148–152

    Article  PubMed  CAS  Google Scholar 

  23. Dobb GJ, Donovan KD (1987) Non-invasive methods of measuring cardiac output. Intensive Care Med 13: 304–309

    PubMed  CAS  Google Scholar 

  24. Doi M, Morita K, Ikeda K (1990) Frequently repeated Fick cardiac output measurements during anesthesia. J Clin Monit 6: 107–112

    Article  PubMed  CAS  Google Scholar 

  25. Forst H, Irlbeck M, Bein H, Roelandt R, Peter K (im Druck) Kontinuierliche Messung des HZV beim Intensivpatienten. Anaesthesist

    Google Scholar 

  26. Freund PR (1987) Transesophageal doppler scanning vs. thermodilution during general anesthesia. An initial comparison of cardiac output techniques. Am J Surg 153: 490–494

    Article  PubMed  CAS  Google Scholar 

  27. Gleason WL, Braunwald E (1962) Studies on the first derivative of the ventricular pressure pulse in man. J Clin Invest 41: 80–91

    Article  PubMed  CAS  Google Scholar 

  28. Greene ES, Gerson JI (1986) One vs. two MAC Halothane anesthesia does not alter the left ventricular diastolic pressure-volume relationship. Anesthesiology 64: 230–237

    Article  PubMed  CAS  Google Scholar 

  29. Grossman W (1990) Diastolic dysfunction and congestive heart failure. Circulation [Suppi III] 81: 1–7

    Google Scholar 

  30. Guyton AC, Jones CE, Coleman TG (1973) The pumping of the heart as expressed by cardiac function curves. In: Guyton AC, Jones CE, Coleman TG (eds) Circulatory physiology: cardiac output and its regulation. Saunders, Philadelphia London Toronto, pp 147–157

    Google Scholar 

  31. Hurford WE, Zapol WM (1988) The right ventricle and critical illness: a review of anatomy, physiology and clinical evaluation of its function. Intensive Care Med 14: 448–457

    Article  PubMed  Google Scholar 

  32. Jansen JRC, Schreuder J, Bogaard JM, Rooyen W van, Verspirille A (1981) Thermodilution technique for measurement of cardiac output during artificial ventilation. J Appl Physiol 50: 584–591

    Google Scholar 

  33. Jansen JRC, Schreuder JJ, Versprille A (1990) Reliability of cardiac output measurements by the thermodilution method. In: Vincent JL (ed) Update 1990. Springer, Berlin Heidelberg New York Tokyo (Update in intensive care and emergency medicine, vol 10, pp 407–412 )

    Google Scholar 

  34. Jardin F, Gueret P, Dubourg O, Farcot JC, Margairaz A, Bourdarias JP (1985) Right ventricular volumes by thermodilution in the adult respiratory distress syndrome: a comparative study using two dimensional echocardiography as a reference method. Chest 88: 34–39

    Article  PubMed  CAS  Google Scholar 

  35. Javeed M, Reines HD (1990) Poor correlation or bioimpedance (Bio) cardiac output and thermodilution (TD) in a general surgery ICU. Crit Care Med [Suppl] S 248 18: (abstract)

    Article  Google Scholar 

  36. Jivegard L, Frid I, Haljamäe H, Holm J, Holm S, Wickström I (1990) Cardiac output determinations in the pig–Thoracic electrical bioimpedance vs. thermodilution. Crit Care Med 18: 995–998

    Article  PubMed  CAS  Google Scholar 

  37. Kamal GD, Symreng T, Starr J (1990) Inconsistent esophageal Doppler cardiac output during acute blood loss. Anesthesiology 72: 95–99

    Article  PubMed  CAS  Google Scholar 

  38. Kass DA (1988) Measuring right ventricular volumes. Am J Physiol 254: 619–621

    Google Scholar 

  39. Kass DA, Midei M, Brinker J, Maughan WL (1990) Influence of coronary occlusion during PTCA on end-systolic and end-diastolic pressure-volume relations in humans. Circulation 81: 447–460

    Article  PubMed  CAS  Google Scholar 

  40. Kay HR, Afshari M, Barash P, et al. (1983) Measurement of ejection fraction by thermal dilution techniques. J Surg Res 34: 337–346

    Article  PubMed  CAS  Google Scholar 

  41. Kono A, Maughan WL, Sunagawa K, Hamilton K, Sagawa K, Weisfeldt ML (1984) The use of left ventricular end-ejection pressure and peak pressure in the estimation of the end-systolic pressure-volume relationship. Circulation 70: 1057–1065

    Article  PubMed  CAS  Google Scholar 

  42. Konstadt SN, Thys D, Mindich BP, Kaplan JA, Goldman M (1986) Validation of quantitative intraoperative transesophageal echocardiography. Anesthesiology 65: 418–421

    Article  PubMed  CAS  Google Scholar 

  43. Kreymann G, Rödiger W, Gottschall C, Grosser S, Raedler A, Greten H (1990) Vergleichende Messungen von Sauerstoffaufnahme and Herzzeitvolumen in Ruhe and unter Belastung–Evaluierung eines neuen Monitors zur kontinuierlichen Bestimmung der Sauerstoffaufnahme and Kohlendioxydabgabe. Z Kardiol 79: 341–346

    PubMed  CAS  Google Scholar 

  44. Kumar A, Minagoe S, Thangathurai D et al. (1989) Noninvasive measurement of cardiac output during surgery using a new continuous-wave doppler esophageal probe. Am J Cardiol 64: 793–798

    Article  PubMed  CAS  Google Scholar 

  45. Kyff JV, Vaughn S, Yang SC, Raheja R, Puri VK (1989) Continuous monitoring of mixed venous oxygen saturation in patients with acute myocardial infarction. Chest 95: 607–611

    Article  PubMed  CAS  Google Scholar 

  46. Lambert CR, Nichols WW, Pepine CJ (1983) Indices of ventricular contractile state: comparative sensitivity and specificity. Am Heart J 106: 136–144

    Article  PubMed  Google Scholar 

  47. Lang RM, Borow KM, Neumann A, Janzen D (1986) Systemic vascular resistance: an unreliable index of left ventricular afterload. Circulation 74: 1114–1123

    Article  PubMed  CAS  Google Scholar 

  48. Lankford EB, Kass DA, Maughan WL, Shoukas AA (1990) Does volume catheter parallel conductance vary during a cadiac cycle? Am J Physiol 27: H1933 - H1942

    Google Scholar 

  49. Leatherman GF, Shook TL, Leatherman SM, Colucci WS (1989) Use of a conductance catheter to detect increased left ventricular inotropic state by end-systolic pressure-volume analysis. Basic Res Cardiol 84: 247–256

    Article  PubMed  Google Scholar 

  50. Levett JM, Replogle RL (1979) Thermodilution cardiac output: a critical analysis and review of the literature. J Surg Res 27: 392–404

    Article  PubMed  CAS  Google Scholar 

  51. Levine RA, Gibson TC, Aretz T, Gilam LD, Guyer DE, King ME, Weyman AE (1984) Echocardiographic measurement of right ventricular volume. Circulation 69: 497–505

    Article  PubMed  CAS  Google Scholar 

  52. Lynch J, Kaemmerer H (1990) Comparison of a modified Fick method with thermodilution for determining cardiac output in critically ill patients on mechanical ventilation. Intensive Care Med 16: 248–251

    Article  PubMed  CAS  Google Scholar 

  53. Magilligan DJ, Teasdall R, Eisinminger R, Peterson E (1987) Mixed venous oxygen saturation as a predictor of cardiac output in the postoperative cardiac surgical patient. Ann Thorac Surg 44: 260–262

    Article  PubMed  Google Scholar 

  54. Mangano DT, Dyke DC van, Ellis RJ (1980) The effect of increasing preload on ventricular output and ejection in man. Limitations of the Frank-Starling mechanism. Circulation 62: 535–541

    PubMed  CAS  Google Scholar 

  55. Martin RW, Bashein G (1989) Measurement of stroke volume with three-dimensional transesophageal ultrasonic scanning: comparison with thermodilution measurement. Anesthesiology 70: 470–476

    Article  PubMed  CAS  Google Scholar 

  56. Maughan WL, Sunagawa K, Burkhoff D, Sagawa K (1984) Effect of arterial impedance changes on the end-systolic pressure-volume relation. Circ Res 54: 595–602

    PubMed  CAS  Google Scholar 

  57. McKay RG, Spears JR, Aroesty JM et al. (1984) Instantaneous measurement of left and right ventricular stroke volume and pressure-volume relationships with an impedance catheter. Circulation 69: 703–710

    Article  PubMed  CAS  Google Scholar 

  58. Mehmel HC, Stockins B, Ruffmann K, Olshausen K von, Schuler G,Kübler W (1981) The linearity of the end-systolic pressure-volume relationship in man and its sensitivity for assessment of left ventricular function. Circulation 63: 1216–1222

    Article  PubMed  CAS  Google Scholar 

  59. Nejad NS, Klein MD, Mirsky I, Lown B (1971) Assessment of myocardial contractility from ventricular pressure recordings. Cardiovasc Res 5: 15–23

    Article  PubMed  CAS  Google Scholar 

  60. Niclou R, Teague SM, Lee R (1990) Clinical evaluation of a diameter sensing doppler cardiac output meter. Crit Care Med 18: 428–432

    Article  PubMed  CAS  Google Scholar 

  61. Okamoto K, Komatsu T, Kumar V, Sanchala V, Kubal K, Bhalodia R, Shibutani K (1986) Effects of intermittent positive pressure ventilation on cardiac output measurements by thermodilution. Crit Care Med 14: 977–980

    Article  PubMed  CAS  Google Scholar 

  62. Parker MM, McCarthy KE, Ognibene FP, Parillo JE (1990) Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97: 126–131

    Article  PubMed  CAS  Google Scholar 

  63. Pearlman AS (1990) The use of doppler in the evaluation of cardiac disorders and function. In: Hurst JW, Schlant RC, Rackley CE, Sonnenblick EH, Wenger NK (eds) The heart, arteries and veins. McGraw-Hill, New-York, pp 2039–2063

    Google Scholar 

  64. Perrino AC Jr, Barash PG (1990) Concentric beam doppler: should we be going in circles? Crit Care Med 18: 456–457

    Article  PubMed  Google Scholar 

  65. Piene H (1986) Pulmonary arterial impedance and right ventricular function. Physiol Rev 66: 606–652

    PubMed  CAS  Google Scholar 

  66. Pinsky MR, Perlini S, Solda PL, Pantaleo P, Calciati A, Finardi G, Bernardi L (1990) Effects of acute aortic and pulmonary artery occlusion on ventricular interdependence in vivo. Eur Heart J 11: 100 (abstract)

    Google Scholar 

  67. Preiser JC, Daper A, Parquier J-N, Contempre B, Vincent J-L (1989) Transthoracic electrical bioimpedance versus thermodilution technique for cardiac output measurement during mechanical ventilation. Intensive Care Med 15: 221–223

    Article  PubMed  CAS  Google Scholar 

  68. Quinones MA, Gaasch WH, Alexander JK (1976) Influence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man. Circulation 53: 293–302

    PubMed  CAS  Google Scholar 

  69. Rajacich N, Burchard KW, Hasan FM, Singh AK (1989) Central venous pressure and pulmonary capillary wedge pressure as estimates of left atrial pressure: Effects of positive end-expiratory pressure and catheter tip malposition. Crit Care Med 17: 7–11

    Article  PubMed  CAS  Google Scholar 

  70. Raper R, Sibbald WJ (1986) Misled by the Wedge? The Swan-Ganz catheter and left ventricular preload. Chest 89: 427–432

    Article  PubMed  CAS  Google Scholar 

  71. Regen DM (1990) Calculation of left ventricular wall stress. Circ Res 67: 245–252

    PubMed  CAS  Google Scholar 

  72. Reinhart K (1988) Zum Monitoring des Sauerstofftransportsystems. Anaesthesist 37: 1–9

    PubMed  CAS  Google Scholar 

  73. Rieke H, Weyland A, Hoeft A, Weyland W, Sonntag H, Breme S (1990) Kontinuierliche HZV-Messung nach dem Fickschen Prinzip in der Kardioanaesthesie. Anaesthesist 39: 13–21

    PubMed  CAS  Google Scholar 

  74. Ross J Jr (1990) Assessment of cardiac function and myocadial contractility. In: Hurst JW, Schlant RC, Rackley CE, Sonnenblick EH, Wenger NK (eds) The heart, arteries and veins. McGraw-Hill, New York, pp 322–335

    Google Scholar 

  75. Russell AE, Smith SA, West MJ et al. (1990) Automated non-invasive measurement of cardiac output by the carbon dioxide rebreathing method: comparisons with dye dilution and thermodilution. Br Heart J 63: 195–199

    Article  PubMed  CAS  Google Scholar 

  76. Sagawa K (1978) The ventricular pressure-volume diagram revisited. Circ Res 43: 677–687

    PubMed  CAS  Google Scholar 

  77. Sagawa K, Suga H, Shoukas AA, Bakalar KM (1977) End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol 40: 748–753

    Article  PubMed  CAS  Google Scholar 

  78. Salandin V, Zussa C, Risica G, Michielon P, Paccagnella A, Cipolotti G, Simini G (1988) Comparison of cardiac output estimation by thoracic electrical bioimpedance, thermodilution, and Fick methods. Crit Care Med 16: 1157–1158

    Article  PubMed  CAS  Google Scholar 

  79. Schlüter M, Hinrichs A, Thier W, Kremer P, Schröder S, Cahalan MK, Hanrath P (1984) Transesophageal two-dimensional echocardiography: Comparison of ultrasonic and anatomic sections. Am J Cardiol 53: 1173–1178

    Article  PubMed  Google Scholar 

  80. Schreuder JJ, Jansen JRC, Settels JJ (1990) Continuous cardiac output monitoring during cardiac surgery. In: Vincent JL (ed) Update 1990. Springer, Berlin Heidelberg New York Tokyo (Update in intensive care and emergency medicine, vol 10, pp 413–416 )

    Google Scholar 

  81. Schulman DS, Biondi JW, Matthay RA, Zaret BL, Soufer R (1989) Differing responses in right and left ventricular filling, loading and volumes during positive end-expiratory pressure. Am J Cardiol 64: 772–777

    Article  PubMed  CAS  Google Scholar 

  82. Schwiep F, Cassidy SS, Ramanathan M, Johnson RL Jr (1988) Rapid in vivo determinations of instantaneous right ventricular pressure and volume in dogs. Am J Physiol 254: H622 - H630

    PubMed  CAS  Google Scholar 

  83. Segal J, Pearl RG, Ford AJ, Stern RA, Gehlbach SM (1989) Instantaneous and continuous cardiac output obtained with a doppler pulmonary artery catheter. J Am Coll Cardiol 13: 1382–1392

    Article  PubMed  CAS  Google Scholar 

  84. Shoemaker WC (1989) Physiologic monitoring of the critically ill patient. In: Shoemaker WC (ed) Textbook of critical care. Saunders, Philadelphia, pp 145–160

    Google Scholar 

  85. Sibbald WJ, Driedger AA, Cunningham DG, Cheung H (1986) Right and left ventricular performance in acute respiratory failure. Crit Care Med 14: 852–857

    Article  PubMed  CAS  Google Scholar 

  86. Singer M, Benett D (1990) Hemodynamic monitoring using aortic doppler. In: Vincent JL (ed) Update 1990. Springer, Berlin Heidelberg New York Tokyo (Update in intensive care and emergency medicine, vol 10, pp 417–429 )

    Google Scholar 

  87. Singer M, Clarke J, Bennett ED (1989) Continuous hemodynamic monitoring by esophageal doppler. Crit Care Med 17: 447–452

    Article  PubMed  CAS  Google Scholar 

  88. Snyder JV, Powner DJ (1982) Effects of mechanical ventilation on the measurement of cardiac output by thermodilution. Crit Care Med 10: 677–682

    Article  Google Scholar 

  89. Sold M (1990) Der Stellenwert des Pulmonaliskatheters in Anästhesie und Intensivmedizin, Teil 1. Anaesthesiol Intensivmed 6: 159–169

    Google Scholar 

  90. Sold M (1990) Der Stellenwert des Pulmonaliskatheters in Anästhesie und Intensivmedizin, Teil 21. Anaesthesiol Intensivmed 7: 198–204

    Google Scholar 

  91. Spahn DR, Schmid ER, Tornic M, Jenni R, Segesser L von, Turina M, Baetscher A (1990) Noninvasive vs. invasive assessment of cardiac output after cardiac surgery: Clinical validation. J Cardiothoracic Anesth 4: 46–59

    Article  CAS  Google Scholar 

  92. Specht M, Reinhart K, Mayr O, Laute V, Roedig J, Wanke M, Eyrich K (1987) Die Genauigkeit der In-vivo-Messung der gemischtvenösen Sauerstoffsättigung in der perioperativen Phase. Anaesthesist 36: 510–511 (abstract)

    Google Scholar 

  93. Spinale FG, Hendrick DA, Crawford FA, Carabello BA (1990) Relationship between bioimpedance, thermodilution and ventriculographic measurements in experimental congestive heart failure. Cardiovasc Res 24: 423–429

    Article  PubMed  CAS  Google Scholar 

  94. Striebel HW, Kretz FJ (1989) Funktionsprinzip, Zuverlässigkeit und Grenzen der Pulsoximetrie. Anaesthesist 38: 649–657

    PubMed  CAS  Google Scholar 

  95. Strobeck JE, Sonnenblick EH (1986) Myocardial contractile properties and ventricular performance. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system, vol 1: The heart. Rven, New York, pp 31–49

    Google Scholar 

  96. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32: 314–322

    PubMed  CAS  Google Scholar 

  97. Taylor SH, Silke B (1988) Is the measurement of cardiac output useful in clinical practice? Br J Anesth 60: 90–98

    Google Scholar 

  98. Teboul JL, Zapol WM, Brun-Buisson C, Abrouk F, Rauss A, Lemaire F (1989) A comparison of pulmonary artery occlusion pressure and left ventricular end-diastolic pressure during mechanical ventilation with PEEP in patients with severe ARDS. Anesthesiology 70: 261–266

    Article  PubMed  CAS  Google Scholar 

  99. Tremper K (1989) Transthoracic electrical bioimpedance vs. thermodilution technique for cardiac output measurement during mechanical ventilation. Intensive Care Med 15: 219–220

    Article  PubMed  CAS  Google Scholar 

  100. Urban P, Scheidegger D, Gabathuler J, Rutishauser W (1987) Thermodilution determination of right ventricular volume and ejection fraction: a comparison with biplane angiography. Crit Care Med 15: 652–655

    Article  PubMed  CAS  Google Scholar 

  101. Vincent JL, Reuse C, Kahn RJ (1988) Effects on right ventricular function of a change from dopamine to dobutamine in critically ill patients. Crit Care Med 16: 659–662

    Article  PubMed  CAS  Google Scholar 

  102. Vincent JL, Thirion M, Brimioule S, Lejeune P, Kahn RJ (1986) Thermodilution measurement of right ventricular ejection fraction with a modified pulmonary artery catheter. Intensive Care Med 12: 33–38

    Article  PubMed  CAS  Google Scholar 

  103. Visser CA, Koolen JJ, Wezel HB van, Dunning AJ (1988) Transesophageal echocardiography: technique and clinical applications. J Cardiothorac Surg 2: 74–91

    CAS  Google Scholar 

  104. Wesseling KH, de Wit B, Weber JAP, Smith NT (1983) A simple device for the continuous measurement of cardiac output. Adv Cardiovasc Phys 5: 16–52

    Google Scholar 

  105. Wong DH, Mahutte CK (1990) Two-beam pulsed doppler cardiac output measurement: reproducibility and agreement with thermodilution. Crit Care Med 18: 433–437

    Article  PubMed  CAS  Google Scholar 

  106. Wong DH, Tremper KK, Stemmer EA et al. (1990) Noninvasive cardiac output: simultaneous comparison of two different methods with thermodilution. Anesthesiology 72: 784–792

    Article  PubMed  CAS  Google Scholar 

  107. Zwissler B, Forst H, Ishii K, Messmer K (1989) A new experimental model of ARDS and pulmonary hypertension in the dog. Res Exp Med 189: 427–438

    Article  CAS  Google Scholar 

  108. Zwissler B, Forst H, Messmer K (1990) Acute pulmonary microembolism induces different changes of preload and contraction pattern in the canine right ventricle. Cardiovasc Res 24: 285–295

    Article  PubMed  CAS  Google Scholar 

  109. Zwissler B, Forst H, Messmer K (in press) Local and global function of the right ventricle in a canine model of pulmonary microembolism and oleic acid edema: Influence of ventilation with PEEP. Anesthesiology

    Google Scholar 

  110. Zwissler B, Vidal-Melo MF (im Druck) Validität der HZV-Messung mittels indirektem Fick’schen Prinzip bei experimentellem Lungenversagen. Anaesthesist

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zwissler, B. (1992). Monitoring der myokardialen Pumpfunktion — Methoden und ihr Stellenwert. In: Hobbhahn, J., Conzen, P., Peter, K., Taeger, K. (eds) Der kardiale Risikopatient in der operativen Medizin. Anaesthesiologie und Intensivmedizin / Anaesthesiology and Intensive Care Medicine, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77007-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77007-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54647-4

  • Online ISBN: 978-3-642-77007-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics