An Introduction to the Histology of Exhumed Mineralized Tissue

  • A. Neil Garland


Bone is unique among the tissues of the body. Firstly, during life it is self-repairing and can alter its properties and configuration in response to mechanical demand; and, secondly, because of its biochemical make up and micromorphological structure it can withstand hundreds, if not thousands of years of internment in many different burial environments.


Fibrous Dysplasia Haversian Canal Cement Line Ground Section Haversian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baud C (1972) Une plaque pleurale calcifée: étude ultrastructurale et crystallographique. Geneva 20:196–199Google Scholar
  2. Beck SW, Mulvaney WP (1966) Apatitic urinary calculi from early American Indians. JAMA 195:1044CrossRefGoogle Scholar
  3. Boross MM, Nemeskeri J (1963) Ein bronzezeitlicher Nierenstein aus Ungarn. Homo 14:149Google Scholar
  4. Garland AN (1987) A histological study of archaeological bone decomposition. In: Boddington A, Garland AN, Janaway RC (eds) Death, decay and reconstruction: approaches to archaeology and forensic science. Univ Press, Manchester pp 109–126Google Scholar
  5. Garland AN (1989) Microscopical analysis of fossil bone. Appl Geochem 4:215–229CrossRefGoogle Scholar
  6. Garland AN, Janaway RC (1989) The taphonomy of inhumation burials. In: Roberts CA, Lee F & Bintliff J (eds) Burial archaeology: current research, methods and developments. BAR Brit Ser 211:15–37Google Scholar
  7. Garland AN, Janaway RC, Roberts CA (1989) A study of the decay processes of the human skeletal remains from the Holy Trinity, Rothwell Parish Church, Northamptonshire. Oxford J Archaeol 7:235–252CrossRefGoogle Scholar
  8. Graf W (1949) Preserved histological structures in Egyptian and ancient Swedish skeletons. Acta Anat 8:236CrossRefGoogle Scholar
  9. Houghton P (1975) A renal calculus from proto-historic New Zealand. OSSA 2:11–14Google Scholar
  10. Jarcho S (1966) The development and present condition of human paleopathology in the United States. In: Jarcho S (ed) Human paleopathology. Yale Univ Press, New Haven, pp 3–30Google Scholar
  11. Kramer C (1984) Plaques pleurales chez un homme du Moyen Age: étude radiologique, microscopique et cristallographique. In: Proc 5th Eur Meet Paleopathology Association, Sienna, pp 199–204Google Scholar
  12. Kramer C, Baud CA, Lagier R (1983) Presumed calcified leiomyoma of the uterus. Arch Pathol Lab Med 107:91–93Google Scholar
  13. Moodie RL (1926) Studies in paleopathology, X111: the element of the Haversian system in normal and pathological structures among fossil vertebrates. Biol Generalis 2:63–95Google Scholar
  14. Putschar WG J (1966) Problems in the pathology and paleopathology of bone. In: Jarcho S (ed) Human paleopathology. Yale Univ Press, New Haven, pp 57–65Google Scholar
  15. Rogers J (1989) Case histories. In: The antiquity of the erosive arthropathies. ARC Conf Proc 5:45–7Google Scholar
  16. Schutkowski H, Hummel S, Gegner, S (1986) Case reports on paleopathology 8. Paleopathol Assoc Newslett 55:11–12Google Scholar
  17. Strietz JM, Aufderheide AC, El-Najjar, MY (1981) A 1 500-year old bladder stone. J Urol 126:452–453.Google Scholar
  18. Strouhal E, Jungwirth J (1977) Ein verkalktes Myoma uteri aus der späten Römerzeit in Ägyptisch-Nubien. Mitt Anthropol Ges Wien 107:215–221Google Scholar
  19. Wells C (1963) Polyostotic fibrous dysplasia in a seventh-century Anglo-Saxon. Brit J Radiol 36:925–6CrossRefGoogle Scholar
  20. Wells C (1965) A pathological Anglo-Saxon femur. Brit J Radiol 38:393–4CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. Neil Garland
    • 1
  1. 1.Department of PathologyUniversity of ManchesterManchesterUK

Personalised recommendations