Homeotic Genes Directing Flower Development in Antirrhinum

  • D. J. Bradley
  • R. Carpenter
  • E. S. Coen
  • L. J. Copsey
  • S. Doyle
  • R. Elliott
  • S. Hantke
  • D. Luo
  • P. C. M. McSteen
  • C. Robinson
  • J. M. Romero
  • G. W.-R. Simon
Conference paper

Summary

Homeotic mutants have been used to define the genetic interactions controlling flowering in Antirrhinum. Three categories of homeotic genes were identified by transposon mutagenesis. The first includes floricaula (flo), which is required to switch inflorescence meristems to floral. This gene has been isolated and shown to be expressed transiently in bract, sepal, petal and carpel primordia. The second group of genes controls the identity (and sometimes the number) of organs in a whorl. These genes affect overlapping whorls and their mutant phenotypes suggest a combinatorial model for gene action in determining the fate of floral primordia. Genes of the third category determine the identity of organs within one whorl and thus affect the symmetry of the flower. We propose that the interactions of these homeotic genes not only control the basic patterns of inflorescence and flower development in Antirrhinum, but possibly in a diverse range of plant species.

Keywords

Doyle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awasthi DK, Kumar V and Murty YS. (1984) Flower development in Antirrhinum majus L.(Scrophulariaceae) with a comment upon corolla tube formation.Bot.Mag.Tokoyo 97: 13–22.CrossRefGoogle Scholar
  2. Bowman JL, Smyth DR and Meyerowitz EM. (1989) Genes directing flower development in Arabidopsis. Plant Cell 1; 37–52.PubMedCrossRefGoogle Scholar
  3. Carpenter R and Coen ES. (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 4; 1483–1493.PubMedCrossRefGoogle Scholar
  4. Carpenter R, Martin CR and Coen ES. (1987) Comparison of genetic behaviour of the transposable element Tam3 at two unlinked pigment loci in Antirrhinum majus.Mol.Gen.Genet. 207; 82–89.Google Scholar
  5. Coen ES, Romero JM, Doyle S, Elliott R, Murphy G and Carpenter R (1990) floricaula: a homeotic gene required for flower development in Antirrhinum majus.Cell 63; 1311–1322.Google Scholar
  6. Haughn GW and Sommerville CR. (1988) Genetic control of morphogenesis in Arabidopsis.Devl.Genet. 9; 73–89.Google Scholar
  7. Heslop-Harrison J. (1964) Sex expression in flowering plants.Brookhaven Symp.Biol. 16; 109–125.Google Scholar
  8. Ingham PW. (1988) The molecular genetics of embryonic pattern formation in Drosophila.Nature 335; 25–34.Google Scholar
  9. Kuckuck H and Schick R. (1930) Die Erbfaktoren bei Antirrhinum majus and ihre Bezeichung.Z.indukt.Abstamm.u.VererbLehre. 56; 51–83.CrossRefGoogle Scholar
  10. Peyritsch J. (1872) Uber Pelorienbildungen.Sber.Akad.Wiss.Wien. 66; 1–35.Google Scholar
  11. Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H and Sommer H (1990) Genetic control of flower development: homeotic genes in Antirrhinum majus.Science 250; 931–936.Google Scholar
  12. Sommer H, Beltran J, Huijser P, Pape H, Lonnig W, Saedler H and Schwarz-Sommer Z.(1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors.EMBO J. 9; 605–613.PubMedGoogle Scholar
  13. Stubbe H. (1966) Genetik and Zytologie von Antirrhinum L. sect Antirrhinum. Veb.Gustav Fischer Verlag, Jena.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • D. J. Bradley
    • 1
  • R. Carpenter
    • 1
  • E. S. Coen
    • 1
  • L. J. Copsey
    • 1
  • S. Doyle
    • 1
  • R. Elliott
    • 1
  • S. Hantke
    • 1
  • D. Luo
    • 1
  • P. C. M. McSteen
    • 1
  • C. Robinson
    • 1
  • J. M. Romero
    • 1
  • G. W.-R. Simon
    • 1
  1. 1.Department of GeneticsThe John Innes InstituteNorwichEngland

Personalised recommendations