Skip to main content

The Involvement of cdc2 in Cell Cycle Control of DNA Replication in Xenopus Egg Extracts

  • Conference paper
DNA Replication: The Regulatory Mechanisms
  • 102 Accesses

Abstract

DNA replication must be strictly controlled in order to coordinate it with the other major events of the cell division cycle. Two main strategies could be employed to investigate this problem. The first is to generate temperature-sensitive (cdc) mutations in yeast that are specifically defective in steps that normally control chromosomal DNA replication. Although this approach has identified a range of genes that are required for DNA replication, the absence of cell-free systems from yeast means that the precise function of these gene products often remains unknown. The second approach is to study cell-free systems that are capable of supporting the initiation of DNA replication from chromosomal (non-viral) origins of replication under cell cycle control. This has been possible following the development of a cell-free extract of Xenopus eggs (Lohka and Masui, 1983) that can support the efficient initiation and completion of chromosomal DNA replication in vitro (Blow and Laskey, 1986; Blow and Watson, 1987). However, the dependence of chromosome replication on a range of basic cellular functions, such as nuclear assembly, severely complicates biochemical fractionation of replication proteins from this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartlett, R. and Nurse, P. (1990). Yeast as a model system for understanding the control of DNA replication in eukaryotes. Bioessays 12, 457–463.

    Article  PubMed  CAS  Google Scholar 

  • Beach, D., Durkacz, B. and Nurse, P. (1982). Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300, 682–687.

    Article  Google Scholar 

  • Blow, J.J. and Laskey, R.A. (1986). Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47, 577–587.

    Article  PubMed  CAS  Google Scholar 

  • Blow, J.J. and Laskey, R.A. (1988). A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 332, 546–548.

    Article  PubMed  CAS  Google Scholar 

  • Blow, J.J. and Nurse, P. (1990). A cdc2-like protein is involved in the initiation of DNA replication in Xenopus egg extracts. Cell 62, 855–862.

    Article  PubMed  CAS  Google Scholar 

  • Blow, J.J., Sheehan, M.A., Watson, J.V. and Laskey, R.A. (1989). Nuclear structure and the control of DNA replication in the Xenopus embryo. J. Cell Sci. suppl. 12, 183–195.

    PubMed  CAS  Google Scholar 

  • Blow, J.J. and Sleeman, A.M. (1990). Replication of purified DNA in Xenopus egg extract is dependent on nuclear assembly. J. Cell Sci. 95, 383–391.

    PubMed  CAS  Google Scholar 

  • Blow, J.J. and Watson, J.V. (1987). Nuclei act as independent and integrated units of replication in a Xenopus cell-free system. EMBO J. 6, 1997–2002.

    PubMed  CAS  Google Scholar 

  • Brizuela, L., Draetta, G. and Beach, D. (1987). p13suc1 acts in the fission yeast cell cycle as a component of the p34cdc2 protein kinase. EMBO J. 6, 3507–3514.

    PubMed  CAS  Google Scholar 

  • Draetta, G., Luca, F., Westendorf, J., Brizuela, L., Ruderman, J. and Beach, D. (1989). cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 56, 829–838.

    Article  PubMed  CAS  Google Scholar 

  • Dunphy, W.G., Brizuela, L., Beach, D. and Newport, J. (1988). The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54, 423–431.

    Article  PubMed  CAS  Google Scholar 

  • Evans, T., Rosenthal, E.T., Youngblom, J., Distel, D. and Hunt, T. (1983). Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Gautier, J., Norbury, C., Lohka, M., Nurse, P. and Maller, J. (1988). Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54, 433–439.

    Article  PubMed  CAS  Google Scholar 

  • Harland, R.M. and Laskey, R.A. (1980). Regulated DNA replication of DNA microinjected into eggs of Xenopus laevis. Cell 21

    Google Scholar 

  • Hayles, J., Beach, D., Durkacz, B. and Nurse, P. (1986). The fission yeast cell cycle control gene cdc2: isolation of a sequence sud that suppresses cdc2 mutant function. Mol. gen. Genet. 202, 291–293.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison, C.J., Cox, R. and Ford, C.C. (1988). The control of DNA replication in a cell-free extract that recapitulates a basic cell-cycle in vitro. Development 103, 553–566.

    PubMed  CAS  Google Scholar 

  • Labbe, J., Capony, J., Caput, D., Cavadore, J., Derancourt, J., Kaghad, M., Lelias, J., Picard, A. and Doree, M. (1989). MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J. 8, 3053–3058.

    PubMed  CAS  Google Scholar 

  • Lee, M.G. and Nurse, P. (1987). Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327, 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Lohka, M.J., Hayes, M.K. and Maller, J.L. (1988). Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl. Acad. Sci. USA 85, 3009–3013.

    Article  PubMed  CAS  Google Scholar 

  • Lohka, M.J. and Masui, Y. (1983). Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic contents. Science 220, 719–721.

    Article  PubMed  CAS  Google Scholar 

  • Lohka, M.J. and Masui, Y. (1985). Effect of Ca2+ ions on the formation of metaphase chromosomes and sperm pronuclei in cell-free preparations from unactivated Rana pipiens eggs. Devl. Biol. 103, 434–442.

    Article  Google Scholar 

  • Mechali, M. and Kearsey, S. (1984). Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell 38, 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Minshull, J., Blow, J. and Hunt, T. (1989). Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56, 947–956.

    Article  PubMed  CAS  Google Scholar 

  • Murray, A.W. and Kirschner, M.W. (1989). Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth, K. (1990). FAR-reaching discoveries about the regulation of START. Cell 63, 1117–1120.

    Article  PubMed  CAS  Google Scholar 

  • Newport, J. (1987). Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell 48, 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Newport, J.W. and Kirschner, J.W. (1984). Regulation of the cell cycle during early Xenopus development. Cell 37, 731–741.

    Article  PubMed  CAS  Google Scholar 

  • Norbury, C.J. and Nurse, P. (1989). Control of the higher eukaryote cell cycle by p34cdc2 homologues. Biochim. Biophys. Acta 989, 85–95.

    CAS  Google Scholar 

  • Novak, B. and Mitchison, J.M. (1989). The first transition point of the mutant cdc2.33 in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 94, 657–662.

    PubMed  Google Scholar 

  • Nurse, P. (1990). Universal control mechanism regulating onset of M-phase. Nature 344, 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Nurse, P. and Bissett, Y. (1981). Gene required in G1 for commitment to the cell cycle and in G2 for control of mitosis in fission yeast. Nature 292, 558–560.

    Article  PubMed  CAS  Google Scholar 

  • Piggott, J.R., Rai, R. and Carter, B.L.A. (1982). A bifunctional gene product involved in two phases of the yeast cell cycle. Nature 298, 391–394.

    Article  PubMed  CAS  Google Scholar 

  • Reed, S.I. and Wittenberg, C. (1990). Mitotic role for the CDC28 protein kinase of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87, 5697–5701.

    Article  PubMed  CAS  Google Scholar 

  • Sheehan, M.A., Mills, A.D., Sleeman, A.M., Laskey, R.A. and Blow, J.J. (1988). Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs. J. Cell Biol. 106, 1–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blow, J.J., Nurse, P. (1992). The Involvement of cdc2 in Cell Cycle Control of DNA Replication in Xenopus Egg Extracts. In: Hughes, P., Fanning, E., Kohiyama, M. (eds) DNA Replication: The Regulatory Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76988-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76988-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76990-0

  • Online ISBN: 978-3-642-76988-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics