Skip to main content

Protein-primed Replication of Bacteriophage Ø29 DNA

  • Conference paper
DNA Replication: The Regulatory Mechanisms

Abstract

Analysis by electron microscopy of the replicative intermediates synthesized in vitro in the ϕ29 replication system indicated that initiation of replication can occur from both DNA ends in the same template molecule. Type II molecules (DNA partially double-stranded and partially single-stranded) are produced by separation of the two displacement forks of double-stranded DNA molecules with two single-stranched branches when they meet.

In addition to the natural template ϕ29 DNA-terminal protein, the ϕ29 DNA polymerase is able to replicate single-stranded DNA with the sequences corresponding to the right 3’ end of ϕ29 DNA by a protein-priming mechanism. In both cases, there was a strong preference for the formation of a covalent complex between the terminal protein p3 and dAMP. However, when poly dC was used as template, p3-dGMP was preferentially formed, indicating that the template specificity for the initiation reaction is provided by the 3’ end of the template strand. In the absence of DNA, the ϕ29 DNA polymerase was able to deoxynucleotidylylate the terminal protein with any of the four dNTPs. In these conditions, the efficiency of the reaction is low, due to a strong decrease in affinity for the dNTPs. The ϕ29 DNA polymerase also catalyzed the +1 nucleotide addition on double-stranded DNA. The different dNMPs could act as template in this +1 addition reaction, as well as the 3’ end of single-stranded DNA. The 3’→5’ exonuclease activity of the ϕ29 DNA polymerase contributes to the fidelity of DNA synthesis by a factor of, at least, 100-fold. Six conserved regions of amino acid homology have been found at the carboxyl-part and in the same linear arrangement in 27 DNA-dependent DNA polymerases belonging to the two main superfamilies: pol I-like and α-like DNA polymerases. According to the three-dimensional model of the Klenow fragment these regions are located in the proposed polymerization domain. Site-directed mutagenesis in three of these regions in the ϕ29 DNA polymerase supports this model.

The nature of the sequences recognized by the viral protein p6 at the ϕ29 DNA ends, and the structure of the protein p6-DNA complex have been further studied. The fact that stimulation of the initiation reaction by protein p6 is higher at conditions that stabilize the double-helix suggests that the nucleoprotein structure formed at the ϕ29 DNA ends facilitates unwinding at the replication origin allowing initiation to occur. The ϕ29 SSB protein p5 stimulates in vitro ϕ29 DNA replication by allowing reinitiations on new templates to take place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • - Bernad A, Blanco L, Lázaro JM, Martín G, Salas M (1989). A conserved 3’→5’ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59: 219–228

    Article  PubMed  CAS  Google Scholar 

  • - Bernad A, Lázaro JM, Salas M, Blanco L (1990). The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in α-like DNA polymerases is required by phage ϕ29 DNA polymerase for protein-primed initiation and polymerization. Proc. Natl. Acad. Sci. USA 87: 4610–4614

    Article  PubMed  CAS  Google Scholar 

  • - Bernad A, Zaballos A, Salas M, Blanco L (1987). Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J. 6:4221–4225.

    Google Scholar 

  • - Blanco L, Bernad A, Blanco MA, Salas M (1991). A general structure for DNA-dependent DNA polymerases. Gene, in press

    Google Scholar 

  • - Blanco L, Bernad A, Lázaro JM, Martín G, Garmendia C, Salas M (1989). Highly efficient DNA systhesis by the phage ϕ29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264: 8935–8940

    PubMed  CAS  Google Scholar 

  • - Blanco L, Bernad A, Salas M (1988). Transition from initiation to elongation in protein-primed ϕ29 DNA replication: salt-dependent stimulation by the viral protein p6. J. Virol. 62: 4167–4172

    PubMed  CAS  Google Scholar 

  • - Blanco L, Prieto I, Gutiérrez J, Bernad A, Lâzaro JM, Hermoso JM, Salas M (1987). Effect of NH4+ions on ϕ29 DNA-protein p3 replication: Formation of a complex between the terminal protein and the DNA polymerase. J. Virol. 61: 3983–3991

    PubMed  CAS  Google Scholar 

  • - Blanco L, Salas M (1984). Characterization and purification of a phage ϕ29-encoded DNA polymerase required for the initiation of replication. Proc. Natl. Acad. Sci. USA 81: 5325–5329

    Article  PubMed  CAS  Google Scholar 

  • - Blanco L, Salas M (1985). Replication of phage ϕ29 DNA with purified terminal protein and DNA polymerase: Synthesis of full-length ϕ29 DNA. Proc. Natl. Acad. Sci. USA 82: 6404–6408

    Article  PubMed  CAS  Google Scholar 

  • - Blasco MA, Bernad A, Blanco L, Salas M (1991). Characterization and mapping of the pyrophosphorolytic activity of the phage ϕ29 DNA polymerase. Involvement of amino acid motifs highly conserved in α-like DNA polymerases. J. Biol. Chem., in press

    Google Scholar 

  • - Clark JM (1988). Novel non-templated nucleotide addition reactions catalyzed by prokaryotic and eukaryotic DNA polymerases. Nucl. Acids. Res 16:9677–9686.

    Article  PubMed  CAS  Google Scholar 

  • - Derbyshire V, Freemont PS, Sanderson MR, Beese L, Friedman JM, Joyce CM, Steitz TA (1988). Genetic and crystallographic studies of the 3’ → 5’ exonucleolytic site of DNA polymerase I. Science 240: 199–201

    Article  PubMed  CAS  Google Scholar 

  • - Escarmis C, Salas M (1981). Nucleotide sequence at the termini of the DNA of Bacillus subtilis phage ϕ29. Proc. Natl. Acad. Sci. USA 78: 1446–1450

    Article  PubMed  CAS  Google Scholar 

  • - Garmendia C, Hermoso JM, Salas M (1990). Functional domain for priming activity in the phage ϕ29 terminal protein. Gene 88: 73–79

    Article  PubMed  CAS  Google Scholar 

  • - Garmendia C, Salas M, Hermoso JM (1988). Site-directed mutagenesis in the DNA linking site of bacteriophage ϕ29 terminal protein: isolation and characterization of a Ser 232 → Thr mutant. Nucl. Acids Res. 16: 5727–5740

    Article  PubMed  CAS  Google Scholar 

  • - Gutiérrez C, Martin G, Sogo JM, Salas M (1991). Mechanism of stimulation of DNA replication by bacteriophage ϕ29 SSB protein p5. J. Biol. Chem. 266: 2104–2111.

    PubMed  Google Scholar 

  • - Hermoso JM, Méndez E, Soriano F, Salas M (1985). Location of the serine residue involved in the linkage between the terminal protein and the DNA of $29. Nucl. Acids. Res. 13: 7715–7728

    CAS  Google Scholar 

  • - Inciarte MR, Salas M, Sogo JM (1980). Structure of replicating DNA molecules of Bacillus subtilis bacteriophage ϕ29. J. Virol. 34: 187–199

    PubMed  CAS  Google Scholar 

  • - Martín G, Lázaro JM, Méndez E, Salas M (1989). Characterization of the phage ϕ29 protein p5 as a single-stranded DNA binding protein. Function in ϕ29 DNA replication. Nucl. Acids. Res. 17: 3663–3672

    Google Scholar 

  • - Mellado RP, Peôalva MA Inciarte MR, Salas M (1980). The protein covalenrly linked to the 5’ termini of the DNA of Bacillus subtilis phage ϕ29 is involved in the initiation of DNA replication. Virology 104: 84–96

    Article  PubMed  CAS  Google Scholar 

  • - Pakula T, Caldentey J, Serrano M, Gutierrez C, Hermoso JM, Salas M, Bamford D (1990). Characterization of a DNA binding protein of bacteriophage PRD1 involved in DNA replication. Nucl. Acids. Res. 18: 6553–6557

    CAS  Google Scholar 

  • - Pastrana R, Lázaro JM, Blanco L, Garda JA, Méndez E, Salas M (1985). Overproduction and purification of protein p6 of Bacillus subtilis phage ϕ29: Role in the initiation of DNA replication. Nucl. Acids Res. 13: 3083–3100

    Article  CAS  Google Scholar 

  • - Prieto I, Serrano M, Lâzaro JM, Salas M Hermoso JM (1988). Interaction of the bacteriophage ϕ29 protein p6 with double-stranded DNA. Proc. Natl. Acad. Sci. USA 85: 314–318

    Article  PubMed  CAS  Google Scholar 

  • - Salas M, Mellado RP, Vinuela E, Sogo JM (1978). Characterization of a protein covalently linked to the 5’ termini of the DNA of Bacillus subtilis phage ϕ29. J. Mol. Biol. 119: 269–291

    Article  PubMed  CAS  Google Scholar 

  • - Serrano M, Gutiérrez J, Prieto I, Hermoso JM, Salas M (1989). Signals at the bacteriophage ϕ29 DNA replication origins required for protein p6 binding and activity. EMBO J. 8:1879–1885

    PubMed  CAS  Google Scholar 

  • - Serrano M, Salas M, Hermoso JM (1990). A novel nucleoprotein complex at a replication origin. Science 248:1012–1016

    Article  PubMed  CAS  Google Scholar 

  • - Vlcek V, Paces V (1986). Nucleotide sequence of the late region of Bacillus phage ϕ29 completes the 19285-bp sequence of ϕ29 genome. Comparison with the homologous sequence of phage PZA. Gene 46: 215–225

    Article  PubMed  CAS  Google Scholar 

  • - Watabe K, Leusch M, Ito J (1984). Replication of bacteriophage ϕ29 DNA in vitro: The roles of terminal protein and DNA polymerase. Proc. Natl. Acad. Sci. USA 81:5374–5378

    Article  PubMed  CAS  Google Scholar 

  • - Yoshikawa H, Friedmann T, Ito J (1981). Nucleotide sequences at the termini of ϕ29 DNA. Proc. Natl. Acad. Sci. USA 78: 1336–1340

    Article  PubMed  CAS  Google Scholar 

  • - Zaballos A, Salas M (1989). Functional domains in the bacteriophage ϕ29 terminal protein for interaction with the $29 DNA polymerase and with DNA. Nucl. Acids. Res. 17:10353–10366

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salas, M. et al. (1992). Protein-primed Replication of Bacteriophage Ø29 DNA. In: Hughes, P., Fanning, E., Kohiyama, M. (eds) DNA Replication: The Regulatory Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76988-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76988-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76990-0

  • Online ISBN: 978-3-642-76988-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics