Skip to main content

Screens for Proteins Binding to the ARS Consensus Sequence

  • Conference paper
DNA Replication: The Regulatory Mechanisms

Abstract

A subset of autonomously replicating sequence (ARS) elements, identified on the basis of their ability to promote high efficiency transformation and extrachromosomal maintenance of plasmids in Saccharomyces cerevisiae, has recently been shown to function as bona fide chromosomal replication origins (Huberman et al. 1988, Dubey et al. 1991, Greenfeder and Newlon, ms. in prep.). Extensive analysis of the DNA sequences required for ARS function on plasmids has revealed the necessity for an eleven base pair (bp) consensus sequence and a variable number of bases 3’ to the T-rich strand of the consensus sequence (reviewed by Newlon 1988, Campbell and Newlon 1991). Mutational analysis of the consensus sequence demonstrated a stringent requirement for most of the bases in the consensus sequence, a finding which suggests that this sequence may function as a protein binding site. In vivo footprinting at ARS1 is consistent with the binding of a protein in the region of the consensus sequence (Lohr and Torchia 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt KT, Styles C, Fink GR (1987) Multiple global regulators control HIS4 transcription in yeast. Science 237:874–880

    Article  PubMed  CAS  Google Scholar 

  • Braus G, Mősch H-U, Vogel K, Hinnen A, Hütter R (1989) Interpathway regulation of the TRP4 gene of yeast. EMBO J 8:939–945

    PubMed  CAS  Google Scholar 

  • Brent R, Ptashne M (1984) A bacterial repressor or a yeast transcriptional terminator can block upstream activation of a yeast gene. Nature 312:612–615

    Article  PubMed  CAS  Google Scholar 

  • Buchman AR, Kimmerly WJ, Rine J, Kornberg RD (1988) Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in S. cerevisiae. Mol Cell Biol 8:210–225

    PubMed  CAS  Google Scholar 

  • Campbell JL, Newlon CS (1991) Chromosomal DNA replication. In J.R. Broach, E.W. Jones and J.R. Pringle (ed.) The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics Cold Spring Harbor Laboratory Press, in press

    Google Scholar 

  • Diffley JFX, Stillman B (1988) Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer. Proc Nat Acad Sci USA 85:2120–2124

    Article  PubMed  CAS  Google Scholar 

  • Diffley JFX, Stillman B (1989) Similarity between the transcriptional silencer proteins ABF1 and RAP1. Science 246:1034–1037

    Article  PubMed  CAS  Google Scholar 

  • Dubey DD, Davis LR, Greenfeder SA, Ong LY, Zhu J, Broach JR, Newlon CS, Huberman JA (1991) The ARS elements associated with silencers of the yeast mating type locus, HML, do not function as chromosomal DNA replication origins. Submitted

    Google Scholar 

  • Eisenberg S, Civalier C, Tye B-K (1988) Specific interaction between a Saccharomyces cerevisiae protein and a DNA element associated with certain autonomously replicating sequences. Proc Natl Acad Sci USA 85:743–746

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Meth Enzymol 101:181–191

    Article  PubMed  CAS  Google Scholar 

  • Hofmann JFX, Gasser SM (1991) Identification and purification of a protein that binds the yeast ARS consensus sequence. Cell 65:1–10

    Article  Google Scholar 

  • Huberman JA, Zhu J, Davis LR, Newlon CS (1988) Close association of a DNA replication origin and an ARS element on chromosome III of the yeast, Saccharomyces cerevisiae. Nucl Acids Res 16:6373–6384

    Article  PubMed  CAS  Google Scholar 

  • Jarvis EE, Clark KL, Sprague GF (1989) The yeast transcription activator PRTF, a homolog of the mammalian Serum Response Factor, is encoded by the MCM1 gene. Genes Dev 3:936–945

    Article  PubMed  CAS  Google Scholar 

  • Kuno K, Murakami S, Kuno S (1990) Single-strand-binding factor(s) which interact with ARS1 of Saccharomyces cerevisiae. Gene 95:73–77

    Article  PubMed  CAS  Google Scholar 

  • Lohr D, Torchia T (1988) Structure of the chromosomal copy of yeast ARS1. Biochemistry 27:3961–3965

    Article  PubMed  CAS  Google Scholar 

  • Moscatelli F, Gariboldi M, Panzeri L (1990) The transcriptional factor PHO2 binds in vitro to the centromeric region CDEII. Yeast 6:S60

    Google Scholar 

  • Newlon CS (1988) Yeast chromosome replication and segregation. Microbiol Rev 52:568–601

    PubMed  CAS  Google Scholar 

  • Palzkill TG, Newlon CS (1988) A yeast replication origin consists of multiple copies of a small conserved sequence. Cell 53:441–450

    Article  PubMed  CAS  Google Scholar 

  • Passmore S, Elble R, Tye B-K (1989) A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes. Genes Dev 3:921–935

    Article  PubMed  CAS  Google Scholar 

  • Rhode PR, Sweder KF, Oegema KF, Campbell JL (1989) The gene encoding ARS binding factor I is essential for the viability of yeast. Genes Dev 3:1926–1939

    Article  PubMed  CAS  Google Scholar 

  • Shore D, Stillman DJ, Brand AH, Nasmyth KA (1987) Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication. EMBO J 6:461–467

    PubMed  CAS  Google Scholar 

  • Sweder KS, Rhode PR, Campbell JL (1988) Purification and characterization of proteins that bind to yeast ARSs. J Biol Chem 263:17270–17277

    PubMed  CAS  Google Scholar 

  • Tice-Baldwin K, Fink GR, Arndt KT (1989) BAS1 has a Myb motif and activates HIS4 transcription only in combination with BAS2. Science 246:931–935

    Article  PubMed  CAS  Google Scholar 

  • Umek RM, Kowalski D (1988) The ease of DNA unwinding as a determinant of initiation of yeast replication origins. Cell 52:559–567

    Article  PubMed  CAS  Google Scholar 

  • Umek RM, Kowalski D (1990) Thermal energy suppresses mutational defects in DNA unwinding at a yeast replication origin. Proc Nat Acad Sci USA 87:2486–2490

    Article  PubMed  CAS  Google Scholar 

  • Van Houten JV, Newlon CS (1990) Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol Cell Biol 10:3917–3925

    PubMed  Google Scholar 

  • Vinson CR, La Marco KL, Johnson PF, Landschulz WN, McKnight SL (1988) In situ detection of sequence-specific DNA-binding activity specified by a recombinant bacteriophage. Genes Dev 2:801–806

    Article  PubMed  CAS  Google Scholar 

  • Walker SS, Francesconi SC, Eisenberg S (1990) A DNA replication enhancer in Saccharomyces cerevisiae. Proc Nat Acad Sci USA 87:4665–4669

    Article  PubMed  CAS  Google Scholar 

  • West RW, Yocum RR, Ptashne M (1984) Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: Location and function of the upstream activating sequence UASG. Mol Cell Biol 4:2467–2478

    PubMed  CAS  Google Scholar 

  • Yoshida K, Kuromitsu Z, Ogawa N, Oshima Y (1989) Mode of expression of the positive regulatory genes PHO2 and PHO4 of the phosphatase regulon in Saccharomyces cerevisiae, Mol Gen Genet 217:31–39

    Article  PubMed  CAS  Google Scholar 

  • Young RA, Davis RW (1983) Yeast RNA polymerase genes: Isolation with antibody probes. Science 222:778–782.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Theis, J.F., Newlon, C.S. (1992). Screens for Proteins Binding to the ARS Consensus Sequence. In: Hughes, P., Fanning, E., Kohiyama, M. (eds) DNA Replication: The Regulatory Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76988-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76988-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76990-0

  • Online ISBN: 978-3-642-76988-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics