Mutations Affecting Replication Origin Function in Yeast

  • Stephen E. Kearsey
  • David Kipling
Conference paper


A number of mutations that improve the replication competence of plasmids containing defective origins of replication have been isolated inSaccharomyces cerevisiae. Some of these are cis-acting, and generate origins de novo by mutation of prokaryotic vector DNA. Other mutations are trans-acting, and complementation analysis has identified a number of yeast genes whose products may have a role in chromosome replication. One gene thus identified, RAR5, encodes a 175 kDa product, and appears to behave as a repressor of replication origin function. The RAR5 gene is identical to DST2, encoding a strand transferase activity, and KEM1, identified by mutations that enhance the karyogamy defect of a kar\ mutation.


Codon Recombination Saccharomyces Uracil Transferase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brewer, BJ (1988) Cell 53:679–686.PubMedCrossRefGoogle Scholar
  2. Brewer, BJ and Fangman, WL (1987) Cell 51:463–471.PubMedCrossRefGoogle Scholar
  3. Brewer, BJ and Fangman, WL (1988) Cell 55:637–643.PubMedCrossRefGoogle Scholar
  4. Broach, JR, Li, YY, Feldman, J, Jayaram, M, Abraham, J, Nasmyth, KA and Hicks, JB (1983) Cold Spring Harbor Symp. Quant. Biol. 47:1165–1173.Google Scholar
  5. Diffley, JFX and Stillman, B (1990) Trends in Genetics 6:427–432.PubMedCrossRefGoogle Scholar
  6. Dykstra, CC, Hamatake, RK and Sugino, A (1990a) J. Biol. Chem. 265: 10968–10973.PubMedGoogle Scholar
  7. Dykstra, CC, Kitada, K, Clark, AB, Hamatake, RK and Sugino, A (1990b) DST2 sequence: EMBL Accession Number M36725.Google Scholar
  8. Hand, R (1978) Cell 15:317–325.PubMedCrossRefGoogle Scholar
  9. Hieter, P, Mann, C, Snyder, M and Davies, RW (1985) Cell 40:381–392.PubMedCrossRefGoogle Scholar
  10. Huberman, JA, Zhu, LR, Davis, LR and Newlon, CS (1988) Nucleic Acids Res. 16:6373–6384.PubMedCrossRefGoogle Scholar
  11. Kearsey, S (1984) Cell 37:299–307.PubMedCrossRefGoogle Scholar
  12. Kearsey, SE and Edwards, J (1987) Mol. Gen. Genet. 210:509–517.PubMedCrossRefGoogle Scholar
  13. Kim, J, Ljungdahl, PO and Fink, GR (1990) Genetics 126:799–812.PubMedGoogle Scholar
  14. Kipling, D and Kearsey, SE (1990) Mol. Cell. Biol. 10:265–272.Google Scholar
  15. Kipling, D, Tambini, C and Kearsey, SE (1991) Nucleic Acids Res. (in press).Google Scholar
  16. Koshland, D, Kent, JC and Hartwell, LH (1985) Cell 40:393–403.PubMedCrossRefGoogle Scholar
  17. Maine, GT, Sinha, P and Tye, B-K (1984) Genetics 106:365–385.PubMedGoogle Scholar
  18. Morrison, A, Araki, H, Clark, AB, Hamatake, RK and Sugino, A (1990) Cell 62:1143–1151.PubMedCrossRefGoogle Scholar
  19. Newlon, CS (1988) Microbiol. Reviews 52:568–601.Google Scholar
  20. Palzkill, TG and Newlon, CS (1988) Cell 53:441–450.PubMedCrossRefGoogle Scholar
  21. Reynolds, AE, McCarroll, RM, Newlon, CS, and Fangman, WL (1989) Mol. Cell. Biol. 9: 4488–4494PubMedGoogle Scholar
  22. Rose MD, and Fink, GR (1987) Cell 48:1047–1060.PubMedCrossRefGoogle Scholar
  23. Snyder, M, Sapolsky, RJ and Davies, RW (1988) Mol. Cell. Biol. 8:2184–2194.PubMedGoogle Scholar
  24. Thrash-Bingham, C and Fangman, WL (1989) Mol. Cell. Biol. 9:809–816.PubMedGoogle Scholar
  25. Umek, RM, Linskens, MHK, Kowalski, D and Huberman, JA (1989) Biochem. Biophys. Acta 1007:1–14.Google Scholar
  26. van Houten, JV and Newlon, CS (1990) Mol. Cell. Biol. 10:3917–3925.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Stephen E. Kearsey
    • 1
  • David Kipling
    • 1
  1. 1.Department of ZoologyUniversity of OxfordOxfordUK

Personalised recommendations