Skip to main content

Cellular Calcium Transport Systems

  • Chapter
Book cover Membrane Transport in Biology

Part of the book series: Membrane Transport in Biology ((MEMBRANE,volume 5))

  • 74 Accesses

Abstract

In the 1880s Sidney Ringer [260–263] demonstrated that calcium was required for contraction of the frog heart, adhesion of cells to each other, and development of fertilized eggs and tadpoles. After Ringer’s experiments, many physiologists confirmed the importance of Ca2 + for maintenance of the morphologic and functional integrity of animal tissues and for the regulation of multiple cellular processes [49].

The author’s laboratory has been supported by the following grants from the National Institutes of Health: DK 39773, DK 38452, DK 38165, NS 10828. The author is an Established Investigator of the American Heart Association.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif A A, Akhtar R, Hawthorne JN (1977) Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P] phosphate. Biochem J 162: 61–73

    PubMed  CAS  Google Scholar 

  2. Affolter H, Carafoli E (1980) The Ca2+-Na+ antiporter of heart mitochondria operates electroneutrally. Biochem Biophys Res Commun 95: 193–196

    Article  PubMed  CAS  Google Scholar 

  3. Akerman KEO, Wikstrom MKF, Saris N-E (1977) Effect of inhibitors on the sigmoidicity of the calcium ion transport kinetics in rat liver mitochondria. Biochim Biophys Acta 464: 287–294

    Article  PubMed  CAS  Google Scholar 

  4. Alkon DL, Rasmussen H (1988) A spatial-temporal model of cell activation. Science 239: 998–1005

    Article  PubMed  CAS  Google Scholar 

  5. Allen TJA, Noble D, Reuter H (eds) (1989) Sodium-calcium exchange. Oxford University Press, Oxford

    Google Scholar 

  6. Ambler SK, Poenie M, Tsien RY, Taylor P (1988) Agonist-stimulated oscillations and cycling of intracellular free calcium in individual cultured muscle cells. J Biol Chem 263: 1952–1959

    PubMed  CAS  Google Scholar 

  7. Arnold BM, Kuttner M, Willis DM, Hitchman AJW, Harrison JE, Murray TM (1975) Can J Physiol Pharmacol 53: 1135

    Article  PubMed  Google Scholar 

  8. Ausiello DA, Skorecki KL, Verkman AS, Bonventre JV (1987) Vasopressin signaling in kidney cells. Kidney Int 31: 521–529

    Article  PubMed  CAS  Google Scholar 

  9. Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204: 191–204

    Article  PubMed  CAS  Google Scholar 

  10. Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA (1969) The influence of calcium on sodium efflux in squid axons. J Physiol (Lond) 200: 431–58

    CAS  Google Scholar 

  11. Baker PF, Baker PF, Blaustein MP Hodgkin AL, Steinhardt RA (1969) The influence of calcium on sodium efflux in squid axons. J Physiol (Lond) 200:431–158

    CAS  Google Scholar 

  12. Barhanin J, Borsotto M, Coppola T, Fosset M, Hosey MM, Mourre C, Pauron D, Qar J, Romey G, Schmid A, Vandaele S, Van Rentergheim C, Lazdunski M (1989) Biochemistry, molecular pharmacology, and functional control of Ca2+ channels. Ann NY Acad Sci 360: 15–26

    Article  Google Scholar 

  13. Beam KG, Knudson CM (1988) Calcium currents in embryonic and neonatal mammalian skeletal muscle. J Gen Physiol 91: 781–798

    Article  PubMed  CAS  Google Scholar 

  14. Bean BP (1985) Two hands of calcium channels in canine atrial cells. Differences in kinetics, selectivity and pharmacology. J Gen Physiol 86: 1–30

    Article  PubMed  CAS  Google Scholar 

  15. Bean BP, Sturek M, Puga A, Hermsmeyer K (1986) Calcium channels in muscle cells isolated from rat: modulation by dihydropyridine drugs. Circ Res 59: 229–235

    PubMed  CAS  Google Scholar 

  16. Bengele HH, Alexander EA, Lechene CP (1980) Calcium and magnesium transport along the inner medullary collecting duct of the rat. Am J Physiol 239 (Renal Fluid Electrolyte Physiol) 8: F24–F29

    Google Scholar 

  17. Benham CD, Tsien RW (1986) Calcium-permeable channels in vascular smooth muscle: voltage-activated, receptor-operated and leak channels. In: Mandel LJ, Eaton DC (eds) Cell calcium and the control of membrane transport. Rockefeller University Press, New York, pp 45–64

    Google Scholar 

  18. Berridge MJ, Cobbold PH, Cuthbertson KSR (1988) Spatial and temporal aspects of cell signalling. Philos Trans R Soc Lond [Biol] 320: 325–343

    Article  CAS  Google Scholar 

  19. Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56: 159–193

    Article  PubMed  CAS  Google Scholar 

  20. Berridge MJ, Irvine RF (1988) Inositol phosphates and cell signalling. Nature 341: 197–205

    Article  Google Scholar 

  21. Biden TJ, Wollheim CB (1986) Ca2+ regulates the inositol tris/tetrakisphosphate pathway in intact and broken preparations of insulin-secreting RIN m5F cells. J Biol Chem 261: 11931–11934

    PubMed  CAS  Google Scholar 

  22. Bonner F, Pansu D, Stein WD (1986) An analysis of calcium transport across the rat intestine. Am J Physiol 250 (Gastrointest Liver Physiol 13): G561–G569

    Google Scholar 

  23. Bonner F (1989) Renal calcium transport: mechanisms and regulation—an overview. Am J Physiol 257 (Renal Fluid Electrolyte Physiol) 26: F707–F711

    Google Scholar 

  24. Bonner F, Spence K (1988) Non-saturable Ca transport in the rat intestine is via the paracellular pathway. In: Bonner F, Peterlik M (eds) Cellular calcium and phosphate transport in health and disease. Liss, New York, pp 277–283

    Google Scholar 

  25. Bonventre JY, Cheung JY (1986) Cytosolic free calcium concentration in cultured renal epithelial cells. Am J Physiol 250: F329–F338

    PubMed  CAS  Google Scholar 

  26. Bonventre JV, Sullivan S, Sukhatme VP, Ouellette AJ (1989) Vasopressin increases the expression of the early growth response gene, Egr-1 in cultured mesangial cells. Kidney Int 35: 169

    Google Scholar 

  27. Bonventre JV, Swidler M (1988) Calcium dependency of prostaglandin E2 production in rat glomerular mesangial cells. Evidence that protein kinase C modulates the Ca2+-dependent activation of phospholipase A2. J Clin Invest 82: 168–176

    Article  PubMed  CAS  Google Scholar 

  28. Bonventre JV (1988) Mediators of ischemic renal injury. Annu Rev Med 39: 531–544

    Article  PubMed  CAS  Google Scholar 

  29. Bonventre JV, Skorecki KL, Kreisberg JI, Cheung JY (1986) Vasopressin increases cytosolic free calcium concentration in glomerular mesangial cells. Am J Physiol 251 (Renal Fluid Electrolyte Physiol) 20: F94–F102

    Google Scholar 

  30. Bonventre JV, Malis CD, Cheung JY (1990) Role of calcium in ischemic injury. Mechanisms and consequences of tissue injury. In: Zelenock GB (ed) Clinical ischemic syndromes. Mosby, St Louis, pp 227–242

    Google Scholar 

  31. Bonventre JV, Weber P, Gronich JH (1988) PAF and PDGF increase cytosolic [Ca2+] and phospholipase activity in mesangial cells. Am J Physiol 254: F87–F94

    PubMed  CAS  Google Scholar 

  32. Borsotto M, Barhanin J, Fosset M, Lazdunski M (1985) The 1,4-dihydropyridine receptor associated with the skeletal muscle voltage-dependent Ca2+ channel. J Biol Chem 260: 14255–14263

    PubMed  CAS  Google Scholar 

  33. Borsotto M, Barhanin J, Norman RI, Lazdunski M (1984) Purification of the dihydropyridine receptor of the voltage-dependent Ca2+ channel from skeletal muscle transverse tubules using (+) 3H PN 200–110. Biochem Biophys Res Commun 122: 1357–1366

    Article  PubMed  CAS  Google Scholar 

  34. Bouchelouche PN, Hainau B, Frederiksen O (1989) Effect of BAY K 8644 on cytosolic free calcium in isolated rabbit gall-bladder epithelial cells. Cell Calcium 10: 37–46

    Article  PubMed  CAS  Google Scholar 

  35. Bourdeau JE, Burg MB (1979) Voltage dependence of calcium transport in the thick ascending limb of Henle’s loop. Am J Physiol 236 (Renal Fluid Electrolyte Physiol) 5: F357–F364

    Google Scholar 

  36. Bourdeau JE, Burg MB (1980) Effect of PTH on calcium transport across the cortical thick ascending limb of Henle’s loop. Am J Physiol 239(Renal Fluid Electrolyte Physiol) 8: F121–F126

    Google Scholar 

  37. Bourdeau JE, Buss SL, Vurek GG (1982) Inhibition of calcium absorption in the cortical thick ascending limb of Henle’s loop by furosemide. J Pharmacol Exp Ther 221: 815–819

    PubMed  CAS  Google Scholar 

  38. Bourdeau JE, Hellstrom-Stein RJ (1982) Voltage-dependent calcium movement across the cortical collecting duct. Am J Physiol 242(Renal Fluid Electrolyte Physiol) 11: F285–F292

    Google Scholar 

  39. Boynton AL (1988) Calcium and epithelial cell proliferation. Miner Electrolyte Metab 14: 86–94

    PubMed  CAS  Google Scholar 

  40. Boynton AL, Whitfield (1976) Different calcium requirements for proliferation of conditionally and unconditionally tumorigenic mouse cells. Proc Natl Acad Sci USA 73: 1651–1654

    CAS  Google Scholar 

  41. Boynton AL, Whitfield JF (1978) Calcium requirement for the proliferation of cells infected with a temperature-sensitive mutant of Rous sarcoma virus. Cancer Res 38: 1237–1240

    PubMed  CAS  Google Scholar 

  42. Boynton AL, Whitfield JF, Isaacs RJ, Tremblay RG (1977) Different extracellular calcium requirements for proliferation of non-neoplastic, preneoplastic and neoplastic mouse cells. Cancer Res 37: 2657–2661

    PubMed  CAS  Google Scholar 

  43. Bridge JHB, Bassingthwaighte JB (1983) Uphill sodium transport driven by an inward calcium gradient in heart muscle. Science 219: 178–180

    Article  PubMed  CAS  Google Scholar 

  44. Brierley GP, Slautterback DB (1964) Studies on ion transport. IV. An electron microscope study of the accumulation of Ca2+ and inorganic phosphate by heart mitochondria. Biochim Biophys Acta 82: 183–186

    Article  CAS  Google Scholar 

  45. Bronner F, Pansu D, Stein WD (1986) An analysis of intestinal calcium transport across the rat intestine. Am J Physiol 250(Gastrointest Liver Physiol) 13. G561–G569

    Google Scholar 

  46. Brown WF (1984) The basic connection. Nature 312: 312–313

    Article  Google Scholar 

  47. Burg MB (1986) Renal handling of sodium, chloride, water, amino acids, and glucose. In: Brenner BM, Rector FC Jr (eds) The kidney. Saunders, Philadelphia, pp 145–175

    Google Scholar 

  48. Burgoyne RD, Geisow MJ (1989) The annexin family of calcium-binding proteins. Cell Calcium 10: 1–10

    Article  PubMed  CAS  Google Scholar 

  49. Burke JL, Caride A, Verma AK, Penniston JT, Kumar R (1989) Plasma membrane calcium pump and 28-kDa calcium binding protein in cells of rat kidney distal tubules. Am J Physiol 257(Renal Fluid Electrolyte Physiol) 26. F842–F849

    Google Scholar 

  50. Campbell KP, Leung AT, Sharp AH (1988) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neuro Sci 11: 425–430

    Article  CAS  Google Scholar 

  51. Campbell AK (1983) Intracellular calcium: its universal role as regulator. Wiley, New York

    Google Scholar 

  52. Carafoli E (1982) The transport of calcium across the inner membrane of mitochondria. In: Carafoli E (ed) Membrane transport of calcium. Academic, New York, pp 109–139

    Google Scholar 

  53. Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56: 395–433

    Article  PubMed  CAS  Google Scholar 

  54. Carafoli E (1988) Intracellular calcium regulation, with special attention to the role of the plasma membrane calcium pump. J Cardiovasc Pharmacol 12 [Suppl 3]: S77–S84

    Article  PubMed  Google Scholar 

  55. Carafoli E (1989) Calcium pump of the plasma membrane. Physiol Rev 71: 129–153

    Google Scholar 

  56. Carafoli E, Longoni S (1987) The plasma membrane in the control of the signalling function of calcium. Soc Gen Physiol Ser 42: 21–29

    PubMed  CAS  Google Scholar 

  57. Carafoli E, Niggli V, Malmstrom K, Caroni P (1980) Calmodulin in natural and reconstituted calcium transporting systems. Ann NY Acad Sci 356: 258–266

    Article  PubMed  CAS  Google Scholar 

  58. Carafoli E, Tiozzo R, Lugli G, Crovetti F, Kratzing C (1974) The release of calcium from heart mitochondria by sodium. J Mol Cell Cardiol 6: 361–371

    Article  PubMed  CAS  Google Scholar 

  59. Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurons. Nature 310: 501–502

    Article  PubMed  CAS  Google Scholar 

  60. Caroni P, Carafoli E (1981) The Ca2+ -pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem 256: 3263–3270

    PubMed  CAS  Google Scholar 

  61. Caroni P and Carafoli E (1983) The regulation of the Na+-Ca2+ exchanger of heart sarcolemma. Eur J Biochem 132: 451–460

    Article  PubMed  CAS  Google Scholar 

  62. Casey PJ, Gilman AG (1988) G protein involvement in receptor-effector coupling. J Biol Chem 263: 2577–2580

    PubMed  CAS  Google Scholar 

  63. Cauvin C, Loutzenhizer R, Van Breemen C (1983) Mechanisms of antagonists induced vasodilation. Annu Rev Toxicol 23: 373–396

    Article  CAS  Google Scholar 

  64. Ceretlo L, Lagnado L, Perry RJ, Robinson DW, McNaughton PA (1989) Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients. Nature 337: 740–743

    Article  Google Scholar 

  65. Chad J, Kalman D, Armstrong D (1987) The role of cAMP-dependent phosphorylation in the maintenance and modulation of voltage-activated calcium channels. In: Mandel LJ, Eaton DC (eds) Cell calcium and the control of membrane transport. Rockefeller University Press, New York, pp 167–186

    Google Scholar 

  66. Chadwick CC, Saito A, Fleischer S (1990) Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc Natl Acad Sci USA 87: 2132–2136

    Article  PubMed  CAS  Google Scholar 

  67. Chafouleas JG, Bolton We, Hidaka H, Boyd AE III, Means AR (1982) Calmodulin and the cell cycle: involvement in regulation of cell-cycle progression. Cell 28: 41–50

    Article  PubMed  CAS  Google Scholar 

  68. Chafouleas JG, Legace L, Bolton WE, Boyd AE III, Means AR (1984) Changes in calmodulin and its mRNA accompany reentry of quiescent (G0) cells into the cell cycle. Cell 36: 73–81

    Article  PubMed  CAS  Google Scholar 

  69. Chamberlain BK, Volpe P, Fleisher S (1984) Calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles: general characteristics. J Biol Chem 259: 7540–7546

    PubMed  CAS  Google Scholar 

  70. Chance B (Editor) (1963) Energy-linked function of mitochondria. Academic, New York

    Google Scholar 

  71. Charbardes D, Imbert-Teboul M, Montegut M, Clique A, Morel F (1976) Distribution of calcitonin-sensitive adenylate cyclase activity along the rabbit kidney tubule. Proc Natl Acad Sci USA 73: 3608–3612

    Article  Google Scholar 

  72. Chen C, Corbley MJ, Roberts TM, Hess P (1989) Transformation changes the functional expression of calcium channels in fibroblasts. Ann NY Acad Sci 560: 118–123

    Article  Google Scholar 

  73. Cheung JY, Constantine JM, Bonventre JV (1986) Regulation of cytosolic free calcium concentration in cultured renal epithelial cells. Am J Physiol 251: F690–F701

    PubMed  CAS  Google Scholar 

  74. Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207: 19–27

    Article  PubMed  CAS  Google Scholar 

  75. Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207: 19–27

    Article  PubMed  CAS  Google Scholar 

  76. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11: 465–469

    Article  PubMed  CAS  Google Scholar 

  77. Chueh S-H, Gill DL (1986) Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms. J Biol Chem 261:13 883–13 886

    Google Scholar 

  78. Cognard C, Lazdunski M, Romey G (1986) Different types of Ca2+ channels in mammalian skeletal muscle cells in culture. Proc Natl Acad Sci USA 83: 517–521

    Article  PubMed  CAS  Google Scholar 

  79. Coll KE, Joseph SK, Corkey BE, Williamson JR (1982) Determination of the matrix free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart mitochondria. J Biol Chem 257: 8696–8704

    PubMed  CAS  Google Scholar 

  80. Cook NJ, Knaupp UB (1988) Solubilization, purification, and reconstitution of the sodium- calcium exchanger from bovine retinal rod outer segments. J Biol Chem 263:11 382–11 388

    Google Scholar 

  81. Crompton M (1985) The regulation of mitochondrial calcium transport in heart. Curr Top Membr Transp 25: 231–276

    CAS  Google Scholar 

  82. Crompton M, Capano M, Carafoli E (1976) The sodium-induced efflux of calcium from heart mitochondria. A possible mechanism for the regulation of mitochondrial calcium. Eur J Biochem 69: 453–462

    Article  CAS  Google Scholar 

  83. Crompton M and Heid I (1978) The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem 91: 599–608

    Article  PubMed  CAS  Google Scholar 

  84. Crompton M, Moser R, Ludi H, Carafoli E (1978) The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem 82: 25–31

    Article  PubMed  CAS  Google Scholar 

  85. Crompton M, Sigel E, Salzmann M, Carafoli E (1976) A kinetic study of the energy-linked influx of Ca2+ into heart mitochondria. Eur J Biochem 69: 429–434

    Article  CAS  Google Scholar 

  86. Curtis BM, Catterall WA (1984) Purification of the calcium antagonist receptor of the voltage- sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23: 2113–2118

    Article  PubMed  CAS  Google Scholar 

  87. Curtis BM, Catterall WA (1985) Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc Natl Acad Sci USA 82: 2528–2532

    Article  PubMed  CAS  Google Scholar 

  88. Curtis BM, Catterall WA (1985) Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules. Biochemistry 25: 3077–3083

    Article  Google Scholar 

  89. Cuthbertson KSR, Cobbold PH (1985) Phorbol ester and sperm activate mouse occytes by inducing sustained oscillations in cell Ca2+. Nature 316: 541–542

    Article  PubMed  CAS  Google Scholar 

  90. Dargemont C, Hilly M, Claret M, Mauger J-P (1988) Characterization of Ca2+ fluxes in rat liver plasma-membrane vesicles. Biochem J 256: 117–124

    PubMed  CAS  Google Scholar 

  91. Davidson FF, Dennis EA, Powell M, Glenney JR Jr (1987) Inhibition of phospholipase A2 by “lipocortins” and calpactins. J Biol Chem 262: 1698–1705

    PubMed  CAS  Google Scholar 

  92. Dean WL (1989) Structure, function and subcellular localization of a human platelet Ca2+ - ATPase. Cell Calcium 10: 289–297

    Article  PubMed  CAS  Google Scholar 

  93. Delfert DM, Hill S, Pershadsingh HA, Sherman WR, MacDonald JM (1986) Myoinositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplasmic reticulum but not from plasma membranes. Biochem J 236: 37–44

    PubMed  CAS  Google Scholar 

  94. Deluca HF, Engstrom G (1961) Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA 47: 1744–1750

    Article  PubMed  CAS  Google Scholar 

  95. Denton RM, McCormack JC (1985) Ca2+ transport by mammalian mitochondria and its role in hormone action. Am J Physiol 249: E543–E554

    PubMed  CAS  Google Scholar 

  96. Dhalla NS, Zhao D (1988) Cell membrane Ca2+ /Mg2+ ATPase. Prog Biophys Mol Biol 52: 1–37

    Article  PubMed  CAS  Google Scholar 

  97. Dietl P, Oberleithner H (1988) Paracellular Ca2+ transport in diluting segment of frog kidney. In: Bonner F, Peterik M (eds) Cellular calcium and phosphate transport in health and disease. Liss, New York, pp 285–292

    Google Scholar 

  98. Dolphin AC, Scott RH (1987) Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurones: modulation by guanine nucleotides. J Physiol (Lond) 386: 1–17

    CAS  Google Scholar 

  99. Dominguez JH, Rothrock JK, Macias WL, Price J (1989) Na+ electrochemical gradient and Na + -Ca2+ exchange in rat proximal tubule. Am J Physiol 257 (Renal Fluid Electrolyte Physiol 26): F531–F538

    PubMed  CAS  Google Scholar 

  100. Doucet A, Katz AI (1982) High affinity Ca-Mg-ATPase along the rabbit nephron. Am J Physiol 242 (Renal Fluid Electrolyte Physiol 11): F346–F352

    PubMed  CAS  Google Scholar 

  101. Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18: 123

    Article  PubMed  CAS  Google Scholar 

  102. Eberhard DA, Holz RW (1987) Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms. J Neurochem 49: 1634–1643

    Article  PubMed  CAS  Google Scholar 

  103. Eggermont JA, Vrolix M, Wuytack F, Raeymaekers L, Casteels R (1988) The (Ca2+ -Mg2+)- ATPases of the plasma membrane and of the endoplasmic reticulum in smooth muscle cells and their regulation. J Cardiovasc Pharmacol 12 [Suppl 5]: S51–S55

    PubMed  CAS  Google Scholar 

  104. Ehrlich BE, Watras J (1988) Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336: 583–586

    Article  PubMed  CAS  Google Scholar 

  105. Eisen A, Kiehart DP, Wieland SJ, Reynolds GT (1984) Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs. J Cell Biol 99: 1647–1654

    Article  PubMed  CAS  Google Scholar 

  106. Ewald DA, Sternweis P, Miller RJ (1988) Guanine nucleotide-binding protein Go-induced coupling of neuropeptide Y receptors to Ca2+ channels in sensory neurons. Proc Natl Acad Sci USA 85: 3633–3637

    Article  PubMed  CAS  Google Scholar 

  107. Exton JH (1988) Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J 2: 2670–2676

    PubMed  CAS  Google Scholar 

  108. Fabiato A, Fabiato F (1977) Calcium release from the sarcoplasmic reticulum. Circ Res 40: 119–129

    PubMed  CAS  Google Scholar 

  109. Feher J J (1983) Facilitated calcium diffusion by intestinal calcium-binding protein. Am J Physiol 244 (Cell Physiol 13): C303–C307

    PubMed  CAS  Google Scholar 

  110. Feher J J (1984) Measurement of facilitated calcium diffusion by soluble calcium-binding protein. Biochim Biophys Acta 773: 91–98

    Article  PubMed  CAS  Google Scholar 

  111. Ferris CD, Huganir RL, Supattapone S, Snyder SH (1989) Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342: 87–89

    Article  PubMed  CAS  Google Scholar 

  112. Fill M, Ma J, Knudson CM, Imagawa T, Campbell KP, Coronado R (1989) Role of the ryanodine receptor of skeletal muscle in excitation-contraction coupling. Ann NY Acad Sci 560: 155–162

    Article  PubMed  CAS  Google Scholar 

  113. Fisher SK, Agranoff BW (1981) Enhancement of the muscarinic synaptosomal phospholipid labeling effect by the ionophore A23187. J Neurochem 37: 968–981

    Article  PubMed  CAS  Google Scholar 

  114. Fiskum G (1985) Intracellular levels and distribution of Ca2+ in digitonin-permeabilized cells. Cell Calcium 6: 25–37

    Article  PubMed  CAS  Google Scholar 

  115. Fiskum G, Lehninger AL (1979) Regulated release of Ca2+ from respiring mitochondria by Ca2+ /2H+ antiport. J Biol Chem 254: 6236–6239

    PubMed  CAS  Google Scholar 

  116. Fleckenstein A (1983) History of calcium antagonists. Circ Res 52 [Suppl I]: I3–I16

    PubMed  CAS  Google Scholar 

  117. Flockerzi V, Oeken HJ, Hofmann F (1986) Purification of a functional receptor for calcium- channel blockers from rabbit skeletal-muscle microsomes. Eur J Biochem 161: 217–224

    Article  PubMed  CAS  Google Scholar 

  118. Fosset M, Jaimovich E, Delpont E, Lazdunski (1983) [3H] Nitrendipine receptors in skeletal muscle. J Biol Chem 258: 6086–6092

    PubMed  CAS  Google Scholar 

  119. Friedman PA (1988) Basal and hormone-activated calcium absorption in mouse renal thick ascending limbs. Am J Physiol 254 (Renal Fluid Electrolyte Physiol 23): F62–F70

    PubMed  CAS  Google Scholar 

  120. Friedman PA, Figueriredo JF, Maack T, Windhager EE (1981) Sodium-calcium interactions in the renal proximal convoluted tubule of the rabbit. Am J Physiol 240: F558–F568

    PubMed  CAS  Google Scholar 

  121. Frindt G, Lee CO, Yang JM, Windhager EE (1988) Potential role of cytoplasmic calcium ions in the regulation of sodium transport in renal tubules. Miner Electrolyte Metab 14: 40–47

    PubMed  CAS  Google Scholar 

  122. Frindt G, Windhager EE (1981) Effect of quinidine, low peritubular [Na] or [Ca] on Na transport in isolated perfused rabbit collecting tubules. Fed Proc 42: 305

    Google Scholar 

  123. Fulton BP, Whittingham DG (1978) Activation of mammalian oocytes by intracellular injection of calcium. Nature 273: 149–151

    Article  PubMed  CAS  Google Scholar 

  124. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342: 32–38

    Article  PubMed  CAS  Google Scholar 

  125. Ghijsen WEJM, Delong MD, van Os CH (1982) ATP-dependent calcium transport and its correlation with Ca2+ ATPase activity in basolateral plasma membranes of rat duodenum. Biochim Biophys Acta 689: 327–336

    Article  PubMed  CAS  Google Scholar 

  126. Gill DL, Ueda T, Chueh S-H, Noel MW (1986) Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism. Nature 320: 461–464

    Article  PubMed  CAS  Google Scholar 

  127. Glossmann H and Ferry DR (1983) Solubilization and partial purification of putative calcium channels labelled with 3H-nimodipine. Naunyn Schmiedbergs Arch Pharmacol 323: 279–291

    Article  CAS  Google Scholar 

  128. Gmaj P. Murer H (1988) Calcium transport mechanisms in epithelial cell membranes. Miner Electrolyte Metab 14: 22–30

    PubMed  CAS  Google Scholar 

  129. Gmaj P, Murer H, Kinne R (1979) Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem J 178: 549–557

    PubMed  CAS  Google Scholar 

  130. Gray PTA (1988) Oscillations of free cytosolic calcium evoked by cholinergic and catecholaminergic agonists in rat parotid acinar cells. J Physiol (Lond) 406: 35–53

    CAS  Google Scholar 

  131. Grinstein S, Erlig D (1978) Intracellular calcium and the regulation of sodium transport in the frog skin. Proc R Soc Lond 202: 353–360

    Article  PubMed  CAS  Google Scholar 

  132. Grover AK, Kwan CY, Daniel EE (1981) Na-Ca exchange in rat myometrium membrane vesicles highly enriched in plasma membranes. Am J Physiol 240 (Cell Physiol 9): C175–C182

    PubMed  CAS  Google Scholar 

  133. Guggino SE, Guggino WB, Green N, Sacktor B (1987) Ca2+-activated K+ channels in cultured medullary thick ascending limb cells. Am J Physiol 252: C121–C127

    PubMed  CAS  Google Scholar 

  134. Guggino SE, Suarez-Isla BA, Guggino WB, Sacktor B (1985) Forskolin and antidiuretic homone stimulate a Ca2+ -activated K+ channel in cultured kidney cells. Am J Physiol 249: F448–F455

    PubMed  CAS  Google Scholar 

  135. Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sinoatrial node cells. J Physiol (Lond) 395: 233–253

    CAS  Google Scholar 

  136. Hajjar RJ, Bonventre JV (1991) Oscillations of intracellular calcium induced by vasopressin in individual fura-2-loaded mesangial cells. Frequency dependence on basal calcium concentration, agonist concentration, and temperature. J Biol Chem 266: 21589–21594

    PubMed  CAS  Google Scholar 

  137. Hale CC, Kleiboeker SB, Carlton CG, Rovetto MJ, Jung C, Kim HD (1988) Evidence for high molecular weight Na-Ca exchange in cardiac sarcolemmal vesicles. J Membr Biol 106: 211–218

    Article  PubMed  CAS  Google Scholar 

  138. Hammill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp technique for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100

    Article  Google Scholar 

  139. Hansford RG (1987) Relation between cytosolic free Ca2+ concentration and the control of pyruvate dehydrogenase in isolated cardiac myocytes. Biochem J 241: 145–151

    PubMed  CAS  Google Scholar 

  140. Hansford RG, Castro F (1981) Effect of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate. Biochem J 198: 525–533

    PubMed  CAS  Google Scholar 

  141. Harris CA, Baer PG, Chirito E, Dirks JH (1974) Composition of mammalian glomerular filtrate. Am J Physiol 227: 972–976

    PubMed  CAS  Google Scholar 

  142. Haworth RA, Hunter DR, Befkoff HA (1980) Na+ releases Ca2+ from liver, kidney and lung mitochondria. FEBS Lett 110: 216–218

    Article  PubMed  CAS  Google Scholar 

  143. Hayat LH, Crompton M (1982) Evidence for the existence of regulatory sites for Ca2+ on the Na+/Ca2+ carrier of cardiac mitochondria. Biochem J 202: 509–518

    PubMed  CAS  Google Scholar 

  144. Hazelton B, Mitchell B, Tupper JT (1979) Calcium, magnesium, and growth control in the WI-38 human fibroblast cell. J Cell Biol 83: 487–498

    Article  PubMed  CAS  Google Scholar 

  145. Hescheler J, Rosenthal W, Trautwein W, Shultz G (1987) The GTP-binding proteins, Go, regulates neuronal calcium channels. Nature 325: 445–447

    Article  PubMed  CAS  Google Scholar 

  146. Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987) The TRP-binding protein, Go, regulates neuronal calcium channels. Nature (Lond) 325: 445–447

    Article  CAS  Google Scholar 

  147. Hescheler J, Rosenthal W, Wulfern M, Tang M, Yajima M, Trautwein W, Schultz G (1988) Involvement of the guanine nueleotide-biding protein, N0, in the inhibitory regulation of neuronal calcium channels. Adv Second Messenger Phosphorprotein Phosphorylation Res 14: 173–187

    Google Scholar 

  148. Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature 309: 453–456

    Article  PubMed  CAS  Google Scholar 

  149. Hess P, Lansman JB, Tsien RW (1984) Different modes of Ca channel grating behavior favoured by dihydropyridine Ca agonists and antagonists. Nature 311: 538–544

    Article  PubMed  CAS  Google Scholar 

  150. Hill TD, Dean NM, Boynton AL (1988) Inositol 1,3,4,5-tetrakisphosphate induces Ca2+ sequestration in rat liver cells. Science 242: 1176–1178

    Article  PubMed  CAS  Google Scholar 

  151. Hokin MR, Hokin LE (1953) Enzyme secretion and incorporation of P32 into phospholipides of pancreas slices. J Biol Chem 203: 967–977

    PubMed  CAS  Google Scholar 

  152. Holl RW, Thorner MO, Mandell GL, Sullivan JA, Sinha YN, Leony DA (1988) Spontaneous oscillations of intracellular calcium and growth hormone secretion. J Biol Chem 263: 9682–9685

    PubMed  CAS  Google Scholar 

  153. Holt WF, Lechene C (1981) ADH-PGE2 interactions in cortical collecting tubule. II. Inhibition of Ca and P reabsorption. Am J Physiol 241 (Renal Fluid Electrolyte Physiol 10): F461–F467

    PubMed  CAS  Google Scholar 

  154. Holz GG IV, Rane SG, Dunlap K, (1986) TRP-binding proteins mediated transmitter inhibition of voltage-dependent calcium channels. Nature (Lond) 319: 670–672

    Article  CAS  Google Scholar 

  155. Holz GG, Rane SC, Dunlap K (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319: 670–672

    Article  PubMed  CAS  Google Scholar 

  156. Hosey MM, Bosortto M, Lazdunski M (1986) Phosphorylation and dephosphorylation of sensitive voltage-dependent Ca2+ channel in skeletal muscle membranes by cAMP- and Ca2+ - dependent processes. Proc Natl Acad Sci USA 83: 3733–3737

    Article  PubMed  CAS  Google Scholar 

  157. Hosey MM, Bosortto M, Lazdunski M (1986) Photoaffinity labelling and phosphorylation of a 165 kilodalton peptide associated with dihydropyridine and phenylalkylamine-sensitive calcium channels. Biochem Biophys Res Commun 147: 1137–1145

    Article  Google Scholar 

  158. Huang YC, Christakos S (1988) Modulation of rat calbindin-D28 gene expression by 1,25- dihydroxyvitamin D3 and dietary alteration. Mol Endocrinol 2: 928–935

    Article  PubMed  CAS  Google Scholar 

  159. Hunter M, Lopes AG, Boulpaep EL, Giebisch GH (1984) Single channel recordings of calcium- activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc Natl Acad Sci USA 81: 4237–4239

    Article  PubMed  CAS  Google Scholar 

  160. Hosey MM, Chang FC, O’Callahan CM, Ptasienski J (1989) L-type calcium channels in cardiac and skeletal muscle. Ann NY Acad Sci 560: 27–38

    Article  PubMed  CAS  Google Scholar 

  161. Imagawa T, Smith JS, Coronado R, Campbell KP (1989) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+ permeable pore of the calcium release channel. J Biol Chem 262: 16636–16643

    Google Scholar 

  162. Imagawa T, Leung AT and Campbell KP (1987) Phosphorylation of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel by an intrinsic kinase in isolated triads from rabbit skeletal muscle. J Biol Chem 262: 8333–8339

    PubMed  CAS  Google Scholar 

  163. Imai M (1978) Calcium transport across the rabbit thick ascending limb of Henle’s loop perfused in vitro. Pfliigers Arch 374: 255–263

    Article  CAS  Google Scholar 

  164. Irvine RF, Moor RM (1986) Micro-injection of inositol 1,3,4,5-tetrakis-phosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J 240: 917–920

    PubMed  CAS  Google Scholar 

  165. Irvine RF (1989) Functions of inositol phosphates. In: Michell RH, Drummond AH, Downes CP (eds) Inositol lipids in cell signalling. Academic, London, pp 135–161

    Google Scholar 

  166. Irvine RF, Moor RM, Pollock WK, Smith PM, Wreggeth KA (1988) Inositol phosphates: proliferation, metabolism and function. Philos Trans R Soc Lond [Biol] 320: 281–298

    Article  CAS  Google Scholar 

  167. Jacob R, Merritt JE, Hallam TJ, Rink TJ (1988) Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature 335: 40–45

    Article  PubMed  CAS  Google Scholar 

  168. Jacobus WE, Tiozzo R, Lugli G, Lehninger AL, Carafoli E (1975) Aspects of energy-linked calcium accumulation by rat heart mitochondria. J Biol Chem 250: 7863–7870

    PubMed  CAS  Google Scholar 

  169. Jayakumar A, Cheng L, Liang CT, Sacktor B (1984) Sodium gradient-dependent calcium uptake in renal basolateral membrane vesicles. J Biol Chem 259: 10827–10833

    PubMed  CAS  Google Scholar 

  170. Jencks WP (1989) How does the calcium pump pump calcium? J Biol Chem 264:18 855–18 858

    CAS  Google Scholar 

  171. Joseph S, Williamson JR (1988) Characteristics of inositol trisphosphate-mediated Ca2+ release from permeabilized hepatocytes. J Biol Chem 261: 14658–14664

    Google Scholar 

  172. Joseph SJ, Williams RJ, Corkey BE, Matschinsky FM, Williamson JR (1984) The effect of inositol triphosphate on Ca2+ fluxes in insulin-secreting tumor cells. J Biol Chem 259: 12952–12955

    PubMed  CAS  Google Scholar 

  173. Keith CH, Ratan R, Maxfield FR, Bajer A, Shelanski ML (1985) Local cytoplasmic calcium gradients in living mitotic cells. Nature 316: 848–850

    Article  PubMed  CAS  Google Scholar 

  174. Kirchberger MA, Antonetz T (1982) Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. J Biol Chem 257: 5685–5691

    PubMed  CAS  Google Scholar 

  175. Kirk CJ, Creba JA, Downes CP, Michell RH (1981) Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function. Biochem Soc Trans 9: 377–379

    PubMed  CAS  Google Scholar 

  176. Klempner M (1985) An adenosine trisphosphate-dependent calcium uptake pump in human neutrophil lysosomes. J Clin Invest 76: 303–310

    Article  CAS  Google Scholar 

  177. Knudson CM, Chaudhari N, Sharp AH, Powell JA, Beam KG, Campbell KP (1989) Specific absence of the α1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J Biol Chem 264: 1345–1348

    PubMed  CAS  Google Scholar 

  178. Kojima I, Kojima K, Rasmussen H (1985) Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion from adrenal glomerulosa cells. J Biol Chem 260: 9177–9184

    PubMed  CAS  Google Scholar 

  179. Kort A A, Capogrossi MC, Lakatta EG (1985) Frequency, amplitude, and propagation velocity of spontaneous Ca2+ -dependent contractile waves in intact adult rat cardiac muscle and isolated myocytes. Circ Res 57: 844–855

    PubMed  CAS  Google Scholar 

  180. Kostyuk P, Akaike N, Osipchuk YU, Savchenko A, Shuba YA (1989) Gating and permeation of different types of Ca Channels. Ann NY Acad Sci 560: 63–79

    Article  PubMed  CAS  Google Scholar 

  181. Krause K-H, Lew PD (1987) Subcellular distribution of Ca2+ pumping sites in human neutrophils. J Clin Invest 80: 107–116

    Article  PubMed  CAS  Google Scholar 

  182. Kretsinger RH (1980) Crystallographic studies of calmodulin and homologs. Ann NY Acad Sci 356: 14–19

    Article  PubMed  CAS  Google Scholar 

  183. Kretsinger RH (1980) Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem 8: 119–174

    Article  PubMed  CAS  Google Scholar 

  184. Kretsinger RH, Mann JE, Simmons JG (1982) Model of the facilitated diffusion of calcium by the intestinal calcium binding protein. In: Norman AW, Schaefer K, Herrath DV, Gringoleit H-G (eds) Vitamin D chemica, Biochemical and Clinical Endocrinology of Calcium Metabolism. De-Gruyter, New York, pp 233–246

    Google Scholar 

  185. Kruskal BA, Maxfield FR (1987) Cytosolic free calcium increases before and oscillate during frustrated phagocytosis in macrophages. J Cell Biol 105: 2685–2693

    Article  PubMed  CAS  Google Scholar 

  186. Kuno M, Goronzy J, Weyand CM, Gardner P (1986) Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes. Nature 323: 269–273

    Article  PubMed  CAS  Google Scholar 

  187. Kuno M and Gardner P (1987) Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326: 301–304

    Article  PubMed  CAS  Google Scholar 

  188. Lang F, Friedrich F, Paulmichl M, Schobersberger W, Jungwith A, Ritter M, Steidl M, Weiss H, Woll E, Tshernko E, Paulmichl R, Hallbrucker C (1990) Ion Channels in Madin-Darby canine kidney cells. Renal Physiol Biochem 13: 82–93

    PubMed  CAS  Google Scholar 

  189. Lassiter WE, Gottschalk CW, Mylle M (1963) Micropuncture study of renal tubular reabsorption of calcium in normal rodents. Am J Physiol 204: 771–775

    CAS  Google Scholar 

  190. Le Grimellec C, Poujeol P, de Rouffignac C (1975) 3H-inulin and electrolyte concentrations in Bowman’s capsule in rat kidney. Comparison with artificial ultrafiltration. Pflugers Arch 354: 117–131

    Article  PubMed  CAS  Google Scholar 

  191. Leblanc N, Humes JR (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248: 372–376

    Article  PubMed  CAS  Google Scholar 

  192. Lechleiter JD, Dartt DA, Brehm P (1988) Vasoactive intestinal peptide activities Ca2+- dependent K+ channels through a cAMP pathway in mouse lacrimal glands. Neuron 1: 227–235

    Article  PubMed  CAS  Google Scholar 

  193. Lederer WJ, Niggli E, Hadley RW (1990) Sodium-calcium exchange in excitable cells: fuzzy space. Science 248: 283

    Article  PubMed  CAS  Google Scholar 

  194. Lee CO, Taylor A, Windhager EE (1980) Cytosolic calcium ion activity in epithelial cells of necturus kidney. Nature 287: 859–861

    Article  PubMed  CAS  Google Scholar 

  195. LeFurgey A, Ingram P, Mandel LJ (1986) Heterogeneity of calcium compartmentation: Electron probe analysis of renal tubules. J Membr Biol 94: 191–196

    Article  PubMed  CAS  Google Scholar 

  196. Lehninger AL (1962) Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol Rev 42: 467–517

    PubMed  CAS  Google Scholar 

  197. Lehninger AL (1970) Mitochondria and calcium ion transport. Biochem J 119: 129–138

    PubMed  CAS  Google Scholar 

  198. Lê-Quôc D and Lê-Quôc K (1989) Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria. Arch. Biochem. Biophys. 273: 466–478

    Article  PubMed  Google Scholar 

  199. Leung AT, Imagawa T, Campbell KP (1987) Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. J Biol Chem 262: 7943–7946

    PubMed  CAS  Google Scholar 

  200. Levi RC, Aloatti G, Fischmeister R (1989) Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflügers Arch 413: 685–687

    Article  PubMed  CAS  Google Scholar 

  201. Lewis DL, Wieght FF, Luini A (1986) A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc Natl Acad Sci USA 83: 9035–9039

    Article  PubMed  CAS  Google Scholar 

  202. Lichtman AH, Segel GB, Lichtman MA (1983) The role of calcium in lymphocyte proliferation. Blood 61: 413–422

    PubMed  CAS  Google Scholar 

  203. Lipscombe D, Madison DV, Poenie M, Reuter H, Tsien RY, Tsien RW (1988) Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Proc Natl Acad Soc USA 85: 2398–2402

    Article  CAS  Google Scholar 

  204. Llach F, Coburn JW, Brickman AW, Kurokawa K, Norman AW, Canterbury JM, Reiss E (1977) Acute actions of 1,25-dihydroxyvitamin D3 in normal man: effect on calcium and parathyroid status. J Clin Endocrinol Metab 44: 1054–1060

    Article  PubMed  CAS  Google Scholar 

  205. Loirand G, Pacaud P, Mironneau C, Mironneau J (1986) Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch 407: 566–568

    Article  PubMed  CAS  Google Scholar 

  206. Lorenzen M, Lee CO, Windhager EE (1984) Cytosolic Ca2+ and Na+ activities in perfused proximal tubules of Necturus kidney. Am J Physiol 247 (Renal Fluid Electrolyte Physiol 16): F93–F102

    PubMed  CAS  Google Scholar 

  207. Maizels E, Jungman RA (1983). Ca2+ -calmodulin-dependent phosphorylation of soluble and nuclear proteins in the rat ovary Endocrinology 112: 1895–1902

    CAS  Google Scholar 

  208. Marchetti C and Brown AM (1988) Protein kinase activator-oleoyl-2-acetyl-sn-glycerol inhibits two types of calcium currents in GH3 cells. Am J Physiol 254. C206–C210

    PubMed  CAS  Google Scholar 

  209. Marty A, Tan YP, Trautmann A (1984) Three types of calcium-dependent channel in rat lacrimal glands. J Physiol (Lond) 357: 293–325

    CAS  Google Scholar 

  210. Matlib MA, Schwartz A and Yamori Y (1985) A Na+-Ca2+ exchange process in isolated sarcolemmal membranes of mesenteric arteries from WKY and SHR rats. Am J Physiol 249 (Cell Physiol 18): C166–C172

    PubMed  CAS  Google Scholar 

  211. Matlib MA, Reeves JP (1987) Solubilization and reconstitution of the sarcolemmal Na+-Ca2+ exchange system of vascular smooth muscle. Biochim Biophys Acta 904: 145–148

    Article  PubMed  CAS  Google Scholar 

  212. Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28: 197–276

    Article  PubMed  CAS  Google Scholar 

  213. McCleskey EW, Aimers W (1985) The Ca channel in skeletal muscle is a large pore. Proc Natl Acad Sci USA 82: 7149–7153

    Article  PubMed  CAS  Google Scholar 

  214. McCormick JG, Denton RM (1986) Ca2+ as a second messenger within mitochondria. Trends Biochem Sci 11: 258–262

    Article  Google Scholar 

  215. McCormick JG, Denton RM (1990) The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues Biochim Biophys Acta 1018: 287–291

    Google Scholar 

  216. Means AR, Dedman JR (1980) Calmodulin-an intracellular calcium receptor. Nature 285: 73–77

    Article  PubMed  CAS  Google Scholar 

  217. Mela L (1968) Interactions of La3+ and local anesthetic drugs with mitochondrial Ca2+ and Mn2+ uptake. Arch Biochim Biophys 123: 286–293

    Article  CAS  Google Scholar 

  218. Mela L (1969) Inhibition and activation of calcium transport in mitochondria. Effect of lanthanides and local anesthetic drugs. Biochemistry 8: 2481–2485

    Article  PubMed  CAS  Google Scholar 

  219. Meldolesi J, Pozzan T (1987) Pathways of Ca2+ influx at the plasma membrane: voltage-, receptor-, and second messenger-operated channels. Exp Cell Res 171: 271–283

    Article  PubMed  CAS  Google Scholar 

  220. Merot J, Bidet M, Gachot B, LeMaout S, Tauc M, Poujeol P (1988) Patch clamp study on primary culture of isolated proximal convoluted tubules. Pflügers Arch 413: 51–61

    Article  PubMed  CAS  Google Scholar 

  221. Merritt JE, Rink TJ (1987) Rapid increases in cytosolic free calcium in response to muscarinic stimulation of rat acinar cells. J Biol Chem 267: 4958–4960

    Google Scholar 

  222. Meyer T, Holowka D, Stryer L (1988) Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science 240: 653–656

    Article  PubMed  CAS  Google Scholar 

  223. Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415: 81–147

    PubMed  CAS  Google Scholar 

  224. Miller BA, Scaduto RC Jr., Tillotson DL, Botti JJ, Cheung JY (1988) Erythropoietin stimulates a rise in intracellular free calcium concentration in single early human erythroid precursors. J Clin Invest 82: 309–315

    Article  PubMed  CAS  Google Scholar 

  225. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148

    Article  PubMed  CAS  Google Scholar 

  226. Miyazaki S-I, Hashimoto N, Yoshimoto Y, Kishimoto T, Igusa Y, Hiramoto Y (1986) Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Dev Biol 118: 259–267

    Article  PubMed  CAS  Google Scholar 

  227. Moews PC, Kretsinger RH (1975) Preliminary crystallographic data for a calcium binding protein for bovine intestine. J Mol Biol 97: 661–664

    Article  Google Scholar 

  228. Moore CL (1971) Specific inhibition of mitochondrial Ca2+ transport by ruthenium red. Biochem Biophys Res Commun 42: 298–305

    Article  PubMed  CAS  Google Scholar 

  229. Morel F, Doucet A (1986) Hormonal control of kidney functions at the cell level. Physiol Rev 66: 377–468

    PubMed  CAS  Google Scholar 

  230. Morel N and Godfraind T (1982) Na-Ca exchange in heart and smooth muscle microsomes. Arch Int Pharmacodyn Ther 258: 319–321

    PubMed  CAS  Google Scholar 

  231. Morgan JI, Curran C (1986). Role of ion fluxes in the control of c-fos expression. Nature 322: 552–555

    Article  PubMed  CAS  Google Scholar 

  232. Morris AP, Gallacher DV, Irvine RF, Peterson OH (1987) Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+ -dependent K+ channels. Nature 330: 653–655

    Article  PubMed  CAS  Google Scholar 

  233. Morton ME, Froehner SC (1987) Monoclonal antibody identifies a 200-kDa subunit of the dihydropyridine-sensitive calcium channel. J Biol Chem 262:11 904–11 907

    CAS  Google Scholar 

  234. Mullaney JM, Chueh S-H, Ghos, TK, Gill DL (1987) Intracellular calcium uptake activated by GTP. J Biol Chem 262:13 865–13 872

    Google Scholar 

  235. Mullaney JM, Yu M, Ghosh TK, Gill DL (1988) Calcium entry into the inositol 1,4,5- trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism. Proc Natl Acad Sci USA 85: 2499–2503

    Article  PubMed  CAS  Google Scholar 

  236. Murayama Y, Morel F, LeGrimellec C (1972) Phosphate, calcium and magnesium transfer in proximal tubules and loops of Henle, as measured by single nephron microperfusion experiments in the rat. Pflugers Arch 333: 1–16

    Article  PubMed  CAS  Google Scholar 

  237. Murer H, Hildmann B (1981) Transcellular transport of calcium and inorganic phosphate in the small intestine epithelium. Am J Physiol 240 (Gastrointest Liver Physiol 3): G409–G416

    PubMed  CAS  Google Scholar 

  238. Murphy PR, Dimattiea GE, Frisen HG (1988) Role of calcium in prolactin-stimulated c-myc gene expression and mitogenesis in NB2 lymphoma cells. Endocrinology 122: 2476–2485

    Article  PubMed  CAS  Google Scholar 

  239. Nakayama N, Kirley TL, Vaghy PL, Schwartz A (1987) Purification of a putative Ca2+ channel protein from rabbit-skeletal muscle. J Biol Chem 262: 6572–6576

    PubMed  CAS  Google Scholar 

  240. Nastainczyk W, Rohrkasten A, Sieber M, Rudolph C, Schachtele C, Marme D, Hofman F (1987) Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur J Biochem 169: 137–142

    Article  PubMed  CAS  Google Scholar 

  241. Nellans HN (1988) Contributions of cellular and paracellular pathways to transepithelial intestinal calcium transport. In: Cellular calcium and phosphate transport in health and disease. Liss, New York, pp 269–276

    Google Scholar 

  242. Nicoll DA, Longoni S, Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250: 562–565

    Article  PubMed  CAS  Google Scholar 

  243. Nicotera P, McConkey DJ, Jones DP, Orrenius S (1989) ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci USA 86: 453–457.

    Article  PubMed  CAS  Google Scholar 

  244. Nilius B, Hess P, Lansmann JB, Tsien RW (1985) A novel type of cardiac calcium in ventricular cells. Nature 316: 443–446

    Article  PubMed  CAS  Google Scholar 

  245. Nilus B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channel in ventricular cells. Nature 316: 443–446

    Article  Google Scholar 

  246. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour production. Nature 308: 693–698

    Article  PubMed  CAS  Google Scholar 

  247. Nowyeky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440–443

    Article  Google Scholar 

  248. O’Sullivan A J, Cheek TR, Moreton RB, Berridge MJ, Burgoyne RD (1989) Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentrations in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J 8: 401–411

    PubMed  Google Scholar 

  249. Palmer LG, Frindt G (1986) Epithelial Na channels; characterization using the patch clamp technique. Fed Proc 45: 2708–2712

    PubMed  CAS  Google Scholar 

  250. Park S, Rasmussen H (1986) Carbachol-induced protein phosphorylation changes in bovine tracheal smooth muscle. J Biol Chem 261: 15 734–15739

    Google Scholar 

  251. Paupardin-Tritsch D, Hammond C, Gershenfeld HM, Nairn AC and Greengard P (1986) cGMP-dependent kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones. Nature 323: 812–814

    Google Scholar 

  252. Penner R, Matthews G, Neher E (1988) Regulation of calcium influx by second messengers in rat mast cells. Nature 334: 499–504

    Article  PubMed  CAS  Google Scholar 

  253. Peonie M, Alderton J, Tsien RY, Steinhardt RA (1985) Changes of free calcium levels with stages of the cell division cycle. Nature 315: 147–149

    Article  Google Scholar 

  254. Persechini A, Noncrief ND, Kretsinger RH (1989) The EF-hand family of calcium modulated proteins. Trends Neursci 12: 462–467

    Article  CAS  Google Scholar 

  255. Petersen OH, Maryuama Y (1984) Calcium-activated potassium channels and their role in secretion. Nature 307: 693–696

    Article  PubMed  CAS  Google Scholar 

  256. Poenie M, Alderton J, Steinhardt R, Tsien R (1985) Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science 233: 886–889

    Article  Google Scholar 

  257. Prentki M, Glennon MC, Thomas AP, Morris RL, Matschinksy FM, Corkey BE (1988) Cell- specific patterns of oscillating free Ca2+ in carbomylcholine-stimulated insulinoma cells. J Biol Chem 263: 11044–11047

    PubMed  CAS  Google Scholar 

  258. Prentki M, Wollheim CB, Lew PD (1984) Ca2+ homeostasis in nermeabilized human neutrophils. J Biol Chem 259:13 777–13 782

    CAS  Google Scholar 

  259. Puskin JS, Gunter TE, Gunter KK, Russell PR (1976) Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry 15: 3834–3842

    Article  PubMed  CAS  Google Scholar 

  260. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7: 1–12

    Article  PubMed  CAS  Google Scholar 

  261. Rasmussen H (1989) The cycling of calcium as an intracellular messenger. Sci Am October: 66–73

    Google Scholar 

  262. Rasmussen CD, Means AR (1989) Calmodulin, cell growth and gene expression. Trends Neurosci 12: 433–438

    Article  PubMed  CAS  Google Scholar 

  263. Reed KC, Bygrave FL (1974) The inhibition of mitochondrial calcium transport by lanthanides and Ruthenium Red. Biochem J 140: 143–155

    PubMed  CAS  Google Scholar 

  264. Reeves JP, Hale CC (1984) The stoicheometry of the cardiac sodium-calcium exchange system. J Biol Chem 259: 7733–7739

    PubMed  CAS  Google Scholar 

  265. Reeves JP, Sutko JL (1983) Competitive interactions of sodium and calcium with the sodium- calcium exchange system of cardiac sarcolemmal vesicles. J Biol Chem 258: 3178–3182

    PubMed  CAS  Google Scholar 

  266. Reuter H, Porzig H (1988) Calcium channels. Diversity and complexity. Nature 336: 113–114

    Article  Google Scholar 

  267. Reuter H, Seitz N (1968) The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol (Lond) 195: 451–470

    CAS  Google Scholar 

  268. Ringer S (1883) A further contribution regarding the influence of different constituents of the blood on the contractions of the heart. J Physiol 4: 29–42

    PubMed  CAS  Google Scholar 

  269. Ringer S (1890) Concerning experiments to test the influence of lime, sodium, and potassium salts on the development of ova and growth of tadpoles. J Physiol 11: 79–84

    PubMed  CAS  Google Scholar 

  270. Ringer S, Sainsbury H (1894) The action of potassium, sodium and calcium salts of Tubiflex rivulorum. J Physiol 16: 1–9

    PubMed  CAS  Google Scholar 

  271. Ringer S, Sainsburg H (1883) An investigation regarding the action of strontium and barium salts compared with the action of lime on the ventricle of the frog’s heart. Practitioner 31: 81–93

    Google Scholar 

  272. Rink TJ (1988) A real receptor-operated calcium channel? Nature 334: 649–650

    Article  PubMed  CAS  Google Scholar 

  273. Rizzoli R, Fleisch H, Bonjour JP (1977) Effect of thyroparatrhyroidectomy on calcium metabolism in the rat: role of 1,25 dihydroxyvitamin D3. Am J Physiol 233: E160–E164

    PubMed  CAS  Google Scholar 

  274. Rocha AS, Magaldi JB, Kokko JP (1977) Calcium and phosphate transport in isolated segments of rabbit Henle’s loop. J Clin Invest 59: 975–983

    Article  PubMed  CAS  Google Scholar 

  275. Rohrkasten A, Meyer HE, Nastainczyk W, Sieber M, Hofmann F (1988) cAMP-dependent protein kinase rapidly phosphorylates serine-687 of the skeletal muscle receptor for calcium channel blockers. J Biol Chem 263:15 325–15 329

    CAS  Google Scholar 

  276. Ross CA, Meldolesi J, Milner TA, Satoh T, Supattopone S, Synder SH (1989) Inositol 1,4,5- trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339: 468–470

    Article  PubMed  CAS  Google Scholar 

  277. Rossi CS, Lehninger AL (1964) Stoichiometry of respiratory stimulation, accumulation of Ca2+ and phosphate and oxidative phosphorylation in rat liver mitochondria. J Biol Chem 239: 3971–3980

    PubMed  CAS  Google Scholar 

  278. Rossi CS, Vasington FD, Carafoli E (1973) The effect of ruthenium red on the uptake and release of Ca2+ by mitochondria. Biochem Biophys Res Commun 50: 846–852

    Article  PubMed  CAS  Google Scholar 

  279. Rottenberg H, Scarpa A (1974) Calcium uptake and membrane potential in mitochondria. Biochemistry 13: 4811–1817

    Article  PubMed  CAS  Google Scholar 

  280. Rouse D, Ng RCK, Suki WN (1980) Calcium transport in the pars recta and thin descending limb of Henle of the rabbit, perfused in vitro. J Clin Invest 65: 37–42

    Article  PubMed  CAS  Google Scholar 

  281. Ruth P, Rohrkasten A, Biel M, Bosse E, Regulla S, Meyer HE, Flockerzi V, Hofmann F (1989) Primary structure of the β subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 245: 1115–1118

    Article  PubMed  CAS  Google Scholar 

  282. Sacks P, Bourdeau JE (1989) Ca2+ absorption in the pars recta of cortical S2 rabbit proximal tubules: role of diffusion. Am J Physiol 257 (Renal Fluid Electrolyte Physiol 267: F262–F267

    Google Scholar 

  283. Saez JC, Connor J A. Spray DC, Bennett MVL (1989) Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate and to calcium ions. Proc Natl Acad Sci USA 86: 2708–2712

    Article  PubMed  CAS  Google Scholar 

  284. Sage SO, Rink TJ (1986) Kinetic differences between thrombin-induced and ADP-induced calcium influx and release from internal stores in fura-2-loaded human platelets. Biochem Biophys Res Commun 136: 1124–1129

    Article  PubMed  CAS  Google Scholar 

  285. Sanchez J, Stefani E (1978) Inward calcium current in twitch muscle fibres of the frog. J Physiol (Lond) 283: 197–209

    CAS  Google Scholar 

  286. Sasaki Y, Hidaka H (1982) Calmodulin and cell proliferation. Biochem Biophys Res Commun 104: 451–456

    Article  PubMed  CAS  Google Scholar 

  287. Saunders JCJ, Isaacson LC (1989) Non-selective cation and Ba permeable apical channels in rabbit renal tubules. International Congress on Physiology, Helsinki

    Google Scholar 

  288. Scarpa A, Azzone GF (1970) The mechanism of ion translocation in mitochondria. 4. Coupling of K+ efflux with Ca2+ uptake. Eur J Biochem 12: 328–335

    Article  PubMed  CAS  Google Scholar 

  289. Schafer J A, Barfuss DW (1982) The study of pars recta function by the perfusion of isolated tubule segments. Kidney Int 22: 434–448

    Article  PubMed  CAS  Google Scholar 

  290. Scharff O, Foder B, Skibsted U (1983) Hysteretic activation of the Ca2+ pump revealed by calcium transients in human red cells. Biochim Biophys Acta 730: 295–305

    Article  PubMed  CAS  Google Scholar 

  291. Schatzman JH (1966) ATP-dependent Ca2+-extrusion from human red cells. Experientia 22: 364–365

    Article  Google Scholar 

  292. Schatzman HJ (1966) ATP-dependent Ca2+ -extrusion from human red cells. Experientia 22: 364–365

    Article  Google Scholar 

  293. Schulz I, Thevenod F, Dehlinger-Kremer (1989) Modulation of intracellular free Ca2+ concentration by IP3-sensitive and IP3-insensitive nonmitochondrial Ca2+ pools. Cell Calcium 10: 325–336

    Article  PubMed  CAS  Google Scholar 

  294. Scott RH, Dolphin AC (1987) Activation of a G protein promotes agonist response to calcium channel ligands. Nature 330: 760–762

    Article  PubMed  CAS  Google Scholar 

  295. Seiler SM, Arnold AJ, Stanton HC (1987) Inhibitors of inositol trisphosphate-induced Ca2+ release from isolated platelet membrane vesicles. Biochem Pharmacol 36: 3331–3337

    Article  PubMed  CAS  Google Scholar 

  296. Selwyn MJ, Dawson AP, Dunnett SJ (1970) Calcium transport in mitochondria. FEBS Lett 10: 1–5

    Article  PubMed  CAS  Google Scholar 

  297. Shangold GA, Murphy SN, Miller RJ (1988) Gonadotrophin-releasing hormone-inducing Ca2+ transients in single identified gonadotropes require both intracellular Ca2+ mobilization and Ca2+ influx. Proc Natl Acad Sci USA 85: 6566–6570

    Article  PubMed  CAS  Google Scholar 

  298. Shareghi GR, Stoner LC (1978) Calcium transport across segments of the rabbit distal nephron in vitro. Am J Physiol 235: F367–F375

    PubMed  CAS  Google Scholar 

  299. Shareghi GR, Agus ZS (1982) Phosphate transport in the light segment of the rabbit coritcal collecting duct. Am J Physiol 242 (Renal Fluid Electrolyte Physiol 11): F379–F384

    PubMed  CAS  Google Scholar 

  300. Sharp AH, Imagawa T, Leung AT, Campbell KP (1987) Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. J Biol Chem 262:12 309–12 315

    Google Scholar 

  301. Sheng M, Thompson MA, Greenberg ME (1991) CREB: A Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252: 1427–1430

    Article  PubMed  CAS  Google Scholar 

  302. Shull GE, Greeb J (1988) Molecular cloning of two isoforms of the plasma membrane Ca2+ - transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+ and other cation transport ATPases. J Biol Chem 263: 8646–8657

    PubMed  CAS  Google Scholar 

  303. Slater EC, and Cleland KW (1953) The effect of calcium on the respiratory and phosphorylative activites of heart-muscle sarcosomes. Biochem J 55: 566–580

    PubMed  CAS  Google Scholar 

  304. Slaughter RS, Welton AF and Morgan DW (1987) Sodium-calcium exchange in sarcolemmal vesicles from tracheal smooth muscle. Biochim Biophys Acta 904: 92–104

    Article  PubMed  CAS  Google Scholar 

  305. Smallwood JI, Gugi B, Rasmussen H (1988) Regulation of erythrocyte Ca2+ pump activity by protein kinase C. J. Biol Chem 263: 2195–2202

    PubMed  CAS  Google Scholar 

  306. Snowdowne KW and Borle AB (1985) Effects of sodium on cytosolic ionized calcium. Na+-Ca2+ exchange as a major influx pathway in kidney cells. J Biol Chem 260: 14998–15007

    PubMed  CAS  Google Scholar 

  307. Somlyo AP, Urbanics R, Vadasz G, Kovach AGB and Somlyo AV (1985) Mitochondrial calcium and cellular electrolytes in brain cortex frozen in situ: electron probe analysis. Biochem Biophys Res Commun 132: 1071–1078

    Article  PubMed  CAS  Google Scholar 

  308. Somlyo AP, Bond M, Somlyo AV (1985) Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314: 622–625

    Article  PubMed  CAS  Google Scholar 

  309. Sordahl (1974) Effects of magnesium, Ruthenium Red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria. Arch Biochem Biophys 167: 104–115

    Article  Google Scholar 

  310. Stanfield PR (1981) Voltage-dependent calcium channels of excitable membranes. Br Med Bull 42: 359–367

    Google Scholar 

  311. Streb H, Bayerdoffer E, Haase W, Irvine RF, Schulz I (1984) Effect of inositol-1,4,5- trisphosphate on isolated fractions of rat pancreas. J Membr Biol 81: 241–253

    Article  PubMed  CAS  Google Scholar 

  312. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphosphate. Nature 306: 67–68

    Article  PubMed  CAS  Google Scholar 

  313. Striessnig J, Moosburger K, Goll A, Ferry DR, Glossmann H (1986) Stereoselective photo-affinity labelling of the purified 1,4-dihydropyridine receptor of the voltage-dependent calcium channel. Eur J Biochem 161: 603–609

    Article  PubMed  CAS  Google Scholar 

  314. Sturek M, Hermsmeyer K (1986) Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science 233: 475–478

    Article  PubMed  CAS  Google Scholar 

  315. Suki WN, Rouse D, Ng RCK, Kokko JP (1980) Calcium transport in the thick ascending limb of Henle. Heterogeneity of function in the medullary and cortical segments. J Clin Invest 66: 1004–1009

    Article  PubMed  CAS  Google Scholar 

  316. Suki WN, Rouse D (1981) Hormonal regulation of calcium transport in thick ascending limb renal tubules. Am J Physiol (Renal Fluid Elect Physiol 10): F171–F174

    Google Scholar 

  317. Supattapone S, Worley PF, Baraban JM, Snyder SH (1988) Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem 263: 1530–1534

    PubMed  CAS  Google Scholar 

  318. Supattapone S, Danoff SK, Theibert A, Joseph SK, Steiner J, Snyder SH (1988) Cyclic AMP- dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci USA 85: 8747–8750

    Article  PubMed  CAS  Google Scholar 

  319. Supattapone S, Worley PF, Baraban JM, Snyder S (1988) Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem 263: 1530–1534

    PubMed  CAS  Google Scholar 

  320. Sutton RAL and Dirks JH (1986) Calcium and mangesium: renal handling and disorders of metabolism. In: Brenner BM, Rector FC Jr (eds) The Kidney. Saunders, Philadelphia, pp 551–618

    Google Scholar 

  321. Szebenyi DME, Moffat K (1987) Determination of the three-dimensional structure of vitamin D-dependent calcium binding proteins from bovine intestine. Methods Enzymol 139: 585–610

    Article  PubMed  CAS  Google Scholar 

  322. Takahashi M, Seagar MJ, Jones JF, Reber BFX, Catterall WC (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84: 5478–5482

    Article  PubMed  CAS  Google Scholar 

  323. Takai Y, Kishimoto A, Iwusa Y, Kawakara Y, Mori T, Nishizuka (1979) Calcium-dependent activation of a multi-functional protein kinase by phospholipids. J Biol Chem 254: 3692–3695

    PubMed  CAS  Google Scholar 

  324. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439–445

    Article  PubMed  CAS  Google Scholar 

  325. Talor Z, Arruda JAL (1985) Partial purification and reconstitution of renal basolateral Na+/Ca2+ exchanger into liposomes. J Biol Chem 260: 15473–15476

    PubMed  CAS  Google Scholar 

  326. Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of receptor for calcium channel blockers from skeletal muscle. Nature 328: 313–318

    Article  PubMed  CAS  Google Scholar 

  327. Tanabe T, Beam KG, Powell J A, Numa S (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336: 134–139

    Article  PubMed  CAS  Google Scholar 

  328. Taylor AN, Gleason We, Lankford GL (1984) Immunocytochemical localization of rat intestinal vitamin D-dependent calcium-binding protein. J Histochem Cytochem 32: 153–158

    Article  PubMed  CAS  Google Scholar 

  329. Teulon J, Paulais M, Boutheir M (1987) A Ca2+-activated cation-selective channel in the basolateral membrane of the cortical thick ascending limb of Henle’s loop of the mouse. Biochim Biophys Acta 905: 125–132

    Article  PubMed  CAS  Google Scholar 

  330. Thevenod F, Deblinger-Kremer M, Kemmer TP, Christian A-L, Potter BVL, Schulz I (1989) Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCap) and-insensitive (IisCap) non- mitochondrial Ca2+ pools in rat pancreatic acinar cells. J Membr Biol 109: 173–186

    Article  PubMed  CAS  Google Scholar 

  331. Tsien RW (1983) Calcium channels in excitable cell membranes. Annu Rev Physiol 45: 341–358

    Article  PubMed  CAS  Google Scholar 

  332. Tsien RW, Lipscombe D, Madison DV, Bley KR, Fux AP (1988) Multiple types of neuronal calcium channels and their selective modulation.Trends Neurosci 11: 431–437

    CAS  Google Scholar 

  333. Tupper JT, Kaufman L, Bodine PV (1980) Related effects of calcium and serum on the G1 phase of the human W138 fibroblast. J Cell Physiol 104: 97–103

    Article  PubMed  CAS  Google Scholar 

  334. Ubl J, Murer H, Kolb HA (1988) Hypotonic shock evokes opening of Ca2+-activated K channels. Pflugers Arch 412: 551–553

    Article  PubMed  CAS  Google Scholar 

  335. Ueda S, Oiki S, Okada Y (1986) Oscillations of cytoplasmic concentrations of Ca2+ and K+ in fused L cells. J Membr Biol 91: 65–72

    Article  PubMed  CAS  Google Scholar 

  336. Ueda T, Chueh S-H, Noel MW, Gill DL (1986) Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within NIE-115 neuronal cell line. J Biol Chem 261: 3184–3192

    PubMed  CAS  Google Scholar 

  337. Ullrich KJ, Rumrich G, Kloss S (1976) Acute Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium-and buffer transport. Pflugers Arch 364: 223–228

    Article  PubMed  CAS  Google Scholar 

  338. Ullrich KJ, Rumrich G, Kloss S (1976) Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Pflugers Arch 364: 223–228

    Article  PubMed  CAS  Google Scholar 

  339. Vaghy PL, Johnson JD, Matlib MA, Wang T, Schwartz A (1982) Selective inhibition of Na+- induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs. J Biol Chem 257: 6000–6002

    PubMed  CAS  Google Scholar 

  340. Vaghy P L, Striessnig J, Miwa K, Knaus HG, Itagaki K, McKenna E, Glossmann H, Schwartz A (1987) Identification of a novel 1,4-dihydropyridine-and phenylalkylamine-binding polypeptide in calcium channel preparations. J Biol Chem 267: 14337–14342

    Google Scholar 

  341. Valverde I, Vandermeers A, Anjaneyulu R, Malaisse WJ (1979) Calmodulin activation of adenylate cyclase in pancreatic islets. Science 206: 225–227

    Article  PubMed  CAS  Google Scholar 

  342. Van Breemen C, Cauvin C, Yamamoto H, Schaver AZ (1987) Vascular smooth muscle calcium channels. J Cardiovasc Pharmacol 10 [Suppl 10]: 510–515

    Google Scholar 

  343. Van Corven EJJM, Timmermans JAH, Mircheff AK, van Os CH (1988) Characterization of intracellular Ca2+ -stores in rat duodenal epithelium. In: Bonner F, Peterik M (eds) Cellular calcium and phosphate transport. Liss, New York, pp 127–132

    Google Scholar 

  344. Van Driessche W (1987) Ca2+ channels in the apical membrane of the toad urinary bladder. Pflugers Arch 410: 243–249

    Article  PubMed  Google Scholar 

  345. Van Driessche W, Van Keer H, Witters K (1987) Activation of a mono- and divalent cation- selective pathway in the apical membrane of the toad urinary bladder. Arch Int Physiol Biochim 95: P18

    Google Scholar 

  346. Varghese S, Lee S, Huang YC, Christakos S (1988) Analysis of rat vitamin D-dependent calbindin-D28K gene expression. J Biol Chem 263: 9776–9784

    PubMed  CAS  Google Scholar 

  347. Vasington FD, Murphy JV (1961) Active binding of calcium by mitochondria. Fed Proc 20, 146

    Google Scholar 

  348. Vashington FD, Murphy JV (1962) Ca2+ uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem 237: 2670–2677

    Google Scholar 

  349. Vercesi A, Reynafarje B, Lehninger AL (1978) Stoicheometry of H+ ejection and H+ uptake coupled to electron transport in rat heart mitochondria. J Biol Chem 253: 6379–6385

    PubMed  CAS  Google Scholar 

  350. Vilven J, Leung AT, Imagawa T, Sharp AH, Campbell KP, Coronado R (1988) Interaction of calcium channels of skeletal muscle with monoclonal antibodies specific for its dihydropyridine receptor. Biophys J 53: 556a

    Google Scholar 

  351. Virk SS, Kirk CJ, Shears SB (1985) Ca2+ transport and Ca2+ dependent ATP hydrolysis by Golgi vesicles from lactating rat mammary glands. Biochem J 226: 741–748

    PubMed  CAS  Google Scholar 

  352. Volpe P, Krause K-H, Hashimoto S, Zorzato F, Pozzan T, Meldolesi J, Lew DP (1988) “Calciosome,” a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc Natl Acad Sci USA 85:1091–1095

    Article  PubMed  CAS  Google Scholar 

  353. Wan B, LaNoue KF, Cheung JY, Scaduto RC Jr (1989) Regulation of citric acid cycle by calcium. J Biol Chem 264: 13430–13439

    PubMed  CAS  Google Scholar 

  354. Wasserman RH, Fullmer CS (1982) In: Cheung WY (ed) Calcium and cell function, (vol 2). Academic, New York, pp 175–216

    Google Scholar 

  355. Wasserman RH, Taylor AN (1966) Vitamin D3-Induced calcium-binding protein in chick intestinal mucosa. Science 152: 791–793

    Article  PubMed  CAS  Google Scholar 

  356. Waybill MM, Yelamarty RV, Zhang Y, Scaduto RC Jr, LaNoue KF, Hsu C, Smith BC, Tillotson DL, Yu FTS, Cheung JY (1991) Nuclear calcium gradients in cultured rat hepatocytes. Am. J. Physiol. (Endocrinol, and Metab). 261: E49–E57

    CAS  Google Scholar 

  357. Whitfield JF, MacManus JP, Rixon RH, Boynton AL, Youdale T, Swierenga S (1976) The positive control of cell proliferation by the interplay on calcium ions and cyclic nucleotides. A review. In Vitro 12: 1–18

    Article  PubMed  CAS  Google Scholar 

  358. Wibo M, Morel N, Godfraind T (1981) Differentiation of Ca2+-pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle. Biochim Biophys Acta 649: 651–660

    Article  PubMed  CAS  Google Scholar 

  359. Wideman RF Jr (1987) Renal regulation of avian calcium and phosphorus metabolism. J Nutr 117: 808–8115

    PubMed  CAS  Google Scholar 

  360. Williams DA, Fogarty KE, Tsien RY, Fay FS (1985) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using fura-2. Nature 318: 558–561

    Article  PubMed  CAS  Google Scholar 

  361. Williams DA, Becker PL, Fay FS (1987) Regional changes in calcium underlying contraction of single smooth muscle cells. Science 235: 1644–1648

    Article  PubMed  CAS  Google Scholar 

  362. Williams AJ, Ashley RH (1989) Reconstitution of cardiac sarcoplasmic reticulum calcium channels. Ann NY Acad Sci 560: 163–173

    Article  PubMed  CAS  Google Scholar 

  363. Williams ME, Ways NR, Brenner R, Sharp AH, Leung AT, Campbell KP, McKenna E, Koch WJ, Hui A, Schwartz A, Harpoid MM (1988) Sequence and expression of mRNAs encoding the α1 and β2 subunits of a DHP-sensitive calcium channel. Science 241: 1661–1664

    Article  PubMed  Google Scholar 

  364. Williamson Jr, Cooper RH, Hoek JB (1981) Role of calcium in the hormonal regulation of liver metabolism. Biochim Biophys Acta 639: 243–293

    Google Scholar 

  365. Wilson DB, Bross TE, Hofmann SL, Majerus PW (1984) Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes. J Biol Chem 259: 11718–11 724

    Google Scholar 

  366. Wilson HA, Greenblatt D, Poenie M, Finkelman FD, Tsien RY (1987) Crosslinkage of a B lymphocyte surface immunoglobulin by anti-Ig or antigen induces prolonged oscillation of intracellular ionized calcium. J Exp Med 166: 601–606

    Article  PubMed  CAS  Google Scholar 

  367. Winegrad S (1979) Electromechanical coupling in the heart muscle. In: Berne RM, Sperelakis N (eds) The heart. American Physiological Society, Bethesda (Handbook of physiology, vol 1)

    Google Scholar 

  368. Wojtczak L, Lehninger AL (1961) Formation and disappearance of an endogeneous uncoupling factor during swelling and contraction of mitochondria. Biochim Biophys Acta 51: 442–456

    Article  PubMed  CAS  Google Scholar 

  369. Wood TL, Kobayashi Y, Frantz G, Varghese S, Christakos S, Tobin AJ (1988) Molecular cloning of mammalian 28,000 Mr vitamin D-dependent calcium binding protein (calbindin- D28K): expression of calbinding-D28K RNAs in rodent brain and kidney. DNA 7: 585–593

    Article  PubMed  CAS  Google Scholar 

  370. Woods NM, Cuthbertson KSR, Cobbold PH (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes, Nature 319: 600–602

    Article  PubMed  CAS  Google Scholar 

  371. Worley PF, Baraban JM, Colvin JS and Snyder SH (1987) Inositol trisphosphate receptor localization in brain: variable stoichiometry with protein kinase C. Nature 325: 159–161

    Article  PubMed  CAS  Google Scholar 

  372. Worley PF, Baraban JM, Supattapone S, Wilson VS, Snyder SH (1987) Characterization of inositol trisphosphate receptor binding in brain:regulation by pH and calcium. J Biol Chem 262: 12132–12136

    PubMed  CAS  Google Scholar 

  373. Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM (1987) A G protein directly regulates mammalian cardiac calcium channels. Science 238: 1288–1292

    Article  PubMed  CAS  Google Scholar 

  374. Yelamarty RV, Miller RV, Scaduto RC Jr, Yu FTS, Tillotson DL, Cheung JY (1990) Three- dimensional intracellular calcium gradients in single human burst-forming units-erythroid- derived erythroblasts induced by erythropoietin. J Clin Invest 85: 1799–1809

    Article  PubMed  CAS  Google Scholar 

  375. Yin HL, Stossel TP (1979) Calcium control of actin network structure by gelsolin. In: Cheung WY (ed) Calcium and cell function, vol 2. Academic, Orlando

    Google Scholar 

  376. Yoshitomi K, Fromter E (1985) How big is the electrochemical potential difference of Na + across rat renal proximal tubular cell membranes in vivo? Pflugers Arch (Suppl 1) S121–S126

    Article  Google Scholar 

  377. Yule DI, Gallacher DV (1988) Oscillations of cystolic calcium in single pancreatic acinar cells stimulated by acetylcholine. FEBS Lett 239: 358–362

    Article  PubMed  CAS  Google Scholar 

  378. Zavortink M, Welsh MJ, Mcintosh JR (1983) The distribution of calmodulin in living mitotic cells. Exp Cell Res 149: 375–385

    Article  PubMed  CAS  Google Scholar 

  379. Zschauer A, van Breemen C, Buhler FR, Nelson MT (1988) Calcium channels in thrombin- activated human platelet membrane. Nature 334: 703–705

    Article  PubMed  CAS  Google Scholar 

  380. Zschauer A, Van Breemen C, Buhler FR, Nelson MT (1988) Calcium channels in thrombin- activated human platelet membrane. Nature 334: 703–705

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonventre, J.V. (1992). Cellular Calcium Transport Systems. In: Schafer, J.A., Christensen, P., Ussing, H.H., Giebisch, G.H. (eds) Membrane Transport in Biology. Membrane Transport in Biology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76983-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76983-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76985-6

  • Online ISBN: 978-3-642-76983-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics