Skip to main content

Anion Exchange Mechanism of Band 3 and Related Proteins

  • Chapter
Book cover Membrane Transport in Biology

Part of the book series: Membrane Transport in Biology ((MEMBRANE,volume 5))

Abstract

Band 3 is a diffuse band on an SDS-polyacrylamide gel of electrophoretically separated erythrocyte membrane proteins. Originally it was the third band from the origin, running slower in the electric field than any of the other proteins except the two spectrin bands, but refined techniques have resolved the second band into band 2 and band 2.1. Quite separately the anion exchange mechanism in erythrocytes behaves in many ways like a carrier, for example, it saturates with Michaelis-Menten kinetics as a function of substrate. The pH dependence of chloride flux is like the titration of a protein, and the flux has a high temperature coefficient like a chemical reaction. The identification of the band 3 protein with the anion exchange mechanism was first suggested by the similarity between the organic anion inhibitors of exchange and the organic phosphate anion used to show that band 3 has functional groups on both sides of the membrane and to show for the first time that a membrane protein was transmembrane [13]. This identification of the band 3 protein with anion exchange function was firmly established by the use of labeled disulfonic stilbenes ([3H2]DIDS) to both block transport and label the band 3 protein on SDS-polyacrylamide gels [17]. In this way the anion exchanger has become synonymous with band 3, though there are two problems with this nomenclature: First, in the SDS-polyacrylamide gel at the same location as the [3H2]- DIDS-labeled band there are other proteins, including other major membrane proteins such as the glycophorins (also known as PAS-I).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alper SL, Brosius FC III, Garcia AM, Gluck S, Brown D, Lodish HF (1989) Two gene products encoding putative anion exchangers of the kidney. Ann NY Acad Sci 54: 102–103

    Google Scholar 

  2. Alper SL, Kopito RR, Libresco SM, Lodish HF (1988) Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line. J Biol Chem 263: 17092–17099

    PubMed  CAS  Google Scholar 

  3. Alper SL, Natale J, Gluck S, Lodish HF, Brown D (1989) Intercalated cell subtypes in rat kidney collecting duct defined using antibodies against erythrocyte band 3 and renal vacuolar H+ATPase. Proc Natl Acad Sci USA 86: 5429–5433

    PubMed  CAS  Google Scholar 

  4. Anderson RA, Lovrein RE (1984) Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature 307: 655–658

    PubMed  CAS  Google Scholar 

  5. Appell KC, Low PS (1981) Partial structural characterization of the cytoplasmic domain of the erythrocyte membrane protein, band 3. J Biol Chem 256:11 104–11 111

    CAS  Google Scholar 

  6. Arese P, Bosia A, Tescarmona GP, Till U (1981) The connection between ionophore mediated calcium movements and intermediary metabolism in human red cells. Cell Calcium 2: 509–524

    CAS  Google Scholar 

  7. Becker BF, Duhm J (1978) Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions. J Physiol (Lond) 282: 149–168

    CAS  Google Scholar 

  8. Bennett V, Stenbuck PJ (1979) The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature 280: 468–473

    PubMed  CAS  Google Scholar 

  9. Bjerrum PJ, Andersen OS, Borders CL Jr, Wieth JO (1989) Functional carboxyl groups in the red cell anion exchange protein. Modification with an impermeant carbodiimide. J Gen Physiol 93: 813–839

    PubMed  CAS  Google Scholar 

  10. Bjerrum PJ, Wieth JO, Borders CL Jr (1983) Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein. J Gen Physiol 81: 453–484

    PubMed  CAS  Google Scholar 

  11. Boodhoo A, Reithmeier RAF (1984) Characterization of matrix-bound band 3, the anion transport protein from human erythrocyte membranes. J Biol Chem 259: 785–790

    PubMed  CAS  Google Scholar 

  12. Brahm J, Gronlund J, Hlastala MP, Ohlsson J, Swenson ER (1987) Effects of in vivo inhibition of red-cell anion exchange and Haldane effect on carbon dioxide output (V CO2) in the dog lung. J Physiol (Lond) 390: 245P–245P (abstract)

    Google Scholar 

  13. Bretscher MS (1971) A major protein which spans the human erythrocyte membrane. J Mol Biol 59: 351–357

    PubMed  CAS  Google Scholar 

  14. Brock CJ, Tanner MJA, Kempf C (1983) The human erythrocyte anion-transport protein: partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange. Biochem J 213: 577–586

    PubMed  CAS  Google Scholar 

  15. Brosius FC III, Alper SL, Garcia AM, Lodish HF (1989) The major kidney band 3 gene transcript predicts an amino-terminal truncated band 3 polypeptide. J Biol Chem 264: 7784–7787

    PubMed  CAS  Google Scholar 

  16. Cabantchik IZ, Balshin M, Breuer W, Rothstein A (1975) Pyridoxal phosphate. An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells. J Biol Chem 250: 5130–5136

    PubMed  CAS  Google Scholar 

  17. Cabantchik ZI, Rothstein A (1974) Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol 15: 207–226

    PubMed  CAS  Google Scholar 

  18. Chaillet JR, Amsler K, Boron WF (1986) Optical measurements of intracellular pH in single LLC-PK1 cells: demonstration of C1-HCO3 exchange. Proc Natl Acad Sci USA 83: 522–526

    PubMed  CAS  Google Scholar 

  19. Chappell JB, Crofts AR (1965) Ion transport and reversible volume changes of isolated mitochondria. In: Tager JM, Papa S, Quagliariello E, Slater EC (eds) BBA Library, regulation of metabolic processes in mitochondria. Elsevier, Amsterdam, pp 302–316

    Google Scholar 

  20. Cornish-Bowden A (1979) Fundamentals of enzyme kinetics. Butterworth, London

    Google Scholar 

  21. Cox JV, Lazarides E (1988) Alternative primary structures in the transmembrane domain of the chicken erythroid anion transporter. Mol Cell Biol 8: 1327–1335

    PubMed  CAS  Google Scholar 

  22. Cox JV, Moon RT, Lazarides E (1985) Anion transporter: highly cell-type-specific expression of distinct polypeptides and transcripts in erythroid and non-erythroid cells. J Cell Biol 100: 1548–1557

    PubMed  CAS  Google Scholar 

  23. Da Silva PP, Nicolson GL (1974) Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes. Biochim Biophys Acta 363: 311–319

    PubMed  CAS  Google Scholar 

  24. Dalmark M, Wieth JO (1970) Chloride and sodium permeabilities of human red cells. Biochim Biophys Acta 219: 525–527

    PubMed  CAS  Google Scholar 

  25. Dalmark M, Wieth JO (1972) Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol (Lond) 224: 583–610

    CAS  Google Scholar 

  26. De Weer P, Breitwieser GE, Smith HG, Kennedy B (1983) ADP-ATP exchange in internally dialyzed squid giant axons. Curr Top Membr Transp 19: 665–669

    Google Scholar 

  27. Dekowski SA, Rybicki A, Drickamer K (1983) A tyrosine kinase associated with the red cell membrane phsophorylates band 3. J Biol Chem 258: 2750–2753

    PubMed  CAS  Google Scholar 

  28. Demuth DR, Showe LC, Ballantine M, Palumbo A, Fraser PJ, Cioe L, Rovera G, Curtis PJ (1986) Cloning and structural characterization of a human non-erythroid band 3-like protein. EMBO J 5: 1205–1214

    PubMed  CAS  Google Scholar 

  29. Dirken MNJ, Mook HW (1931) The rate of gas exchange between blood cells and serum. J Physiol (Lond) 73: 349–360

    CAS  Google Scholar 

  30. Downward J, Yarden Y, Mayes E, Scrace G, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307: 521–527

    PubMed  CAS  Google Scholar 

  31. Drenckhahn D, Franz H (1986) Identification of actin-, alpha-actinin-, and vinculin-containing plaques at the lateral membrane of epithelial cells. J Cell Biol 102: 1843–1852

    PubMed  CAS  Google Scholar 

  32. Drenckhahn D, Schluter K, Allen DP, Bennett V (1985) Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230: 1287–1289

    PubMed  CAS  Google Scholar 

  33. Fincham DA, Teoh R, Mason DK, Young JD (1989) Glycine and L-glutamate transport by the band 3 anion-exchange transporter in human and in horse erythrocytes. Biochem Soc Trans 17: 541–542

    CAS  Google Scholar 

  34. Freedman J (1984) Membrane-bound immunoglobulins and complement components on young and old red cells. Transfusion 24: 477–481

    PubMed  CAS  Google Scholar 

  35. Frohlich O (1984) Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes. J Gen Physiol 84: 877–893

    PubMed  CAS  Google Scholar 

  36. Frohlich O, Gunn RB (1986) Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system. Biochim Biophys Acta 864: 169–194

    PubMed  CAS  Google Scholar 

  37. Frohlich O, King PA (1988) Mechanisms of anion net transport in the human erythrocyte. In Gunn RB, Parker JC (eds) Cell physiology of blood. Rockefeller University Press, New York, pp 181–192

    Google Scholar 

  38. Funder J, Tosteson DC, Wieth JO (1978) Effects of bicarbonate on lithium transport in human red cells. J Gen Physiol 71: 721–746

    PubMed  CAS  Google Scholar 

  39. Golan DE, Veatch W (1980) Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci USA 77: 2537–2541

    PubMed  CAS  Google Scholar 

  40. Gottipaty V, Fröhlich O (1988) Effects of extracellular sulfonates on chloride net efflux. Biophys J 53: 531a–531a (abstract)

    Google Scholar 

  41. Gottipaty VK (1988) Characteristics of band 3-mediated anion net fluxes in human erythrocytes. Thesis, Emory University, Atlanta

    Google Scholar 

  42. Graf T, Beug H (1983) Role of the v-erbA and v-erbB oncogenes of avian erythroblastosis virus in erythroid cell transformation. Cell 34: 7–9

    PubMed  CAS  Google Scholar 

  43. Grinstein S, Ship S, Rothstein A (1978) Anion transport in relation to proteolytic dissection of band 3 protein. Biochim Biophys Acta 507: 294–304.

    PubMed  CAS  Google Scholar 

  44. Gunn RB (1972) A titratable carrier model for both mono- and di-valent anion transport in human red blood cells. In: Rorth M, Astrup P (eds) Oxygen affinity of hemoglobin and red cell acid base status. Academic, New York, pp 823–827

    Google Scholar 

  45. Gunn RB (1979) Transport of anions across red cell membranes. In: Giebish G, Tosteson DC, Ussing HH (eds) Membrane transport in biology II. Transport across single biological membranes. Springer, Berlin Heidelberg New York, pp 59–80

    Google Scholar 

  46. Gunn RB (1989) Buffer equilibria in red blood cells. In: Seldin DW, Giebisch G (eds) The regulation of acid-base balance. Raven, New York, pp 57–67

    Google Scholar 

  47. Gunn RB, Dalmark M, Tosteson DC, Wieth JO (1973) Characteristics of chloride transport in human red blood cells. J Gen Physiol 61: 185–206

    PubMed  CAS  Google Scholar 

  48. Gunn RB, Frohlich O (1979) Asymmetry in the mechanism for anion exchange in human red blood cell membranes: evidence for reciprocating sites that react with one transported anion at a time. J Gen Physiol 74: 351–374

    PubMed  CAS  Google Scholar 

  49. Haest CWM, Kamp D, Deuticke B (1979) Formation of disulfide bonds between glutathione and membrane SH groups in human erythrocytes. Biochim Biophys Acta 557: 363–371

    PubMed  CAS  Google Scholar 

  50. Hamburger HJ (1892) Über de Einfluss der Athmung auf die Permeabilität der roten Blutkörperchen. Z Biol 28: 405

    Google Scholar 

  51. Hasselbalch KA (1916) Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensaure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem. Z 78: 112–144

    CAS  Google Scholar 

  52. Hunter MJ (1971) A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell. J Physiol (Lond) 218: 49P–50P (abstract)

    CAS  Google Scholar 

  53. Hunter MJ (1977) Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J Physiol (Lond) 268: 35–49

    CAS  Google Scholar 

  54. Hwang J-K, Warshel A (1988) Why ion pair reversal by protein engineering is unlikely to succeed. Nature 334: 270–272

    PubMed  CAS  Google Scholar 

  55. Jay DG (1983) Characterization of the chicken erythrocyte anion exchange protein. J Biol Chem 258: 9431–9436

    PubMed  CAS  Google Scholar 

  56. Jennings ML (1976) Proton fluxes associated with erythrocyte membrane anion exchange. J Membr Biol 27: 187–205

    Google Scholar 

  57. Jennings ML (1978) Characteristics of CO2-independent pH equilibration in human red blood cells. J Membr Biol 40: 365–391

    PubMed  CAS  Google Scholar 

  58. Jennings ML (1980) Apparent “recruitment” of S04 transport sites by the CI gradient across the human erythrocyte membrane. In: Lassen UV, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Munksgaard, Copenhagen, pp 450–466

    Google Scholar 

  59. Jennings ML (1982) Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes. J Gen Physiol 79: 169–185

    PubMed  CAS  Google Scholar 

  60. Jennings ML (1982) Reductive methylation of the two 4,4′-diisothiocyanodihydrostilbene- 2,2′-disulfonate-binding lysine residues of band 3, the human erythrocyte anion transport protein. J Biol Chem 257: 7554–7559

    PubMed  CAS  Google Scholar 

  61. Jennings ML (1989) Structure and function of the red blood cell anion transport protein. Annu Rev Biophys Biophys Chem 18: 397–430

    PubMed  CAS  Google Scholar 

  62. Jennings ML, Al-Rhaiyel S (1988) Modification of a carboxyl group that appears to cross the permeability barrier in the red blood cell anion transporter. J Gen Physiol 92: 161–178

    PubMed  CAS  Google Scholar 

  63. Jennings ML, Anderson MP, Monaghan R (1986) Monoclonal antibodies against human erythrocyte band 3 protein. J Biol chem 261: 9002–9010

    PubMed  CAS  Google Scholar 

  64. Kanes KJ (1989) Band 3 structure and function: 35-C1NMR and topographical investigations. Thesis California Institute of Technology, Pasadena

    Google Scholar 

  65. Kaplan JH, Pring M, Passow H (1983) Band-3 protein-mediated anion conductance of the red cell membrane. Slippage vs. ionic diffusion. FEBS Lett 156: 175–179

    PubMed  CAS  Google Scholar 

  66. Karadsheh NA, Uyeda K (1977) Changes in allosteric properties of phosphofructokinase bound to erythrocyte membranes. J Biol Chem 252: 7418–7420

    PubMed  CAS  Google Scholar 

  67. Kay MMB (1975) Mechanism of removal of senescent cells by human macrophages in situ. Proc Natl Acad Sci USA 72: 3521–3525

    PubMed  CAS  Google Scholar 

  68. Kay MMB (1978) Role of physiologic autoantibody in the removal of senescent human red cell. J Supramol Struct 9: 555–567

    PubMed  CAS  Google Scholar 

  69. Kay MMB, Bosman GJCGM, Johnson GJ, Beth AH (1988) Band-3 polymers and aggregates, and hemoglobin precipitates in red cell aging. Blood Cells 14: 275–289

    PubMed  CAS  Google Scholar 

  70. Kay MMB, Goodman JR (1984) IgG antibodies do not bind to band 3 in intact erythrocytes. Enzymatic treatment of cells is required for IgG binding. Biomed Biochim Acta 43: 841–846

    PubMed  CAS  Google Scholar 

  71. Kim H-RC, Yew NS, Ansorge W, Voss H, Schwager C, Vennstrom B, Zenke M, Engel JD (1988) Two different mRNAs are transcribed from a single genomic locus encoding the chicken erythrocyte anion transport proteins (band 3). Mol Cell Biol 8: 4416–4424

    PubMed  CAS  Google Scholar 

  72. King PA, Gunn RB (1989) Na- and Cl-dependent glycine transport in human red blood cells and ghosts. A study of the binding of substrates to the outward-facing carrier. J Gen Physiol 93: 321–342

    PubMed  CAS  Google Scholar 

  73. Knauf PA (1979) Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure. Curr Top Membr Transp 12: 249–363

    CAS  Google Scholar 

  74. Knauf PA, Law F-Y, Marchant PM (1983) Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. J Gen Physiol 81: 95–126

    PubMed  CAS  Google Scholar 

  75. Knauf PA, Mann NA (1984) Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system. J Gen Physiol 83: 703–725

    PubMed  CAS  Google Scholar 

  76. Knauf PA, Rothstein A (1971) Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J Gen Physiol 58: 190–210

    PubMed  CAS  Google Scholar 

  77. Koeppen BM, Helman SI (1982) Acidification of luminal fluid by the rabbit cortical collecting tubule perfused in vitro. Am J Physiol 242: F521–F531

    PubMed  CAS  Google Scholar 

  78. Kopito RR (1991) Molecular biology of the anion exchanger gene family. Int Rev Cytol 123: 177–199

    Google Scholar 

  79. Kopito RR, Andersson MA, Lodish HF (1987) Multiple tissue-specific sites of transcriptional initiation of the mouse anion antiport gene in erythroid and renal cells. Proc Natl Acad Sci USA 84: 7149–7153

    PubMed  CAS  Google Scholar 

  80. Kopito RR, Andersson MM, Herzlinger DA, Al-Awqati Q, Lodish HF (1988) Structure and tissue-specific expression of the mouse anion-exchanger gene in erythroid and renal cells. In: Gunn RB, Parker JC (eds) Cell physiology of blood. Rockefeller University Press, New York, pp 151–161

    Google Scholar 

  81. Kopito RR, Lee BS, Simmons DM, Lindsey AE, Morgans CW, Schneider K (1989) Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger. Cell 59: 927–937

    PubMed  CAS  Google Scholar 

  82. Kopito RR, Lodish HF (1985) Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316: 234–238

    PubMed  CAS  Google Scholar 

  83. Kudrycki KE, Newman PR, Schull GE (1990) cDNA cloning and tissue distribution of mRNAs for two proteins that are related to the band 3 Cl-/HCO3- exchanger. J Biol Chem 265: 462–471

    PubMed  CAS  Google Scholar 

  84. Kudrycki KE, Shull GE (1989) Primary structure of the rat kidney band 3 anion exchange protein deduced from a cDNA. J Biol Chem 264: 8185–8192

    PubMed  CAS  Google Scholar 

  85. Kurtz I, Golchini K (1987) Na+-independent C1-HCO3 exchange in Madin-Darby canine kidney cells. Role in intracellular pH regulation. J Biol Chem 262: 4516–4520

    PubMed  CAS  Google Scholar 

  86. Labotka RJ, Omachi A (1987) Erythrocyte anion transport of Phosphate analogs. J Biol Chem 262: 305–311

    PubMed  CAS  Google Scholar 

  87. Labotka RJ, Omachi A (1988) The pH dependence of red cell membrane transport of titratable anions studied by NMR spectroscopy. J Biol Chem 263: 1166–1173

    PubMed  CAS  Google Scholar 

  88. Lambert A, Lowe AG (1978) Chloride/bicarbonate exchange in human erythrocytes. J Physiol (Lond) 275: 51–63

    CAS  Google Scholar 

  89. Lepke S, Passow H (1976) Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts. Biochim Biophys Acta 455: 353–370

    PubMed  CAS  Google Scholar 

  90. Lieberman DM, Reithmeier RAF (1988) Localization of the carboxyl terminus of band 3 to the cytoplasmic side of the erythrocyte membrane using antibodies raised against a synthetic peptide. J Biol Chem 263: 10022–10028

    PubMed  CAS  Google Scholar 

  91. Lindsey AE, Schneider K, Simmons DM, Baron R, Lee BS, Kopito RR (1990) Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc Natl Acad Sci USA 87: 5278–5282

    PubMed  CAS  Google Scholar 

  92. Low PS, Westfall MA, Allen DP, Appell KC (1984) Characterization of the reversible conformational equilibrium of the cytoplasmic domain of the erythrocyte membrane band 3. J Biol Chem 259:13 070–13 076

    Google Scholar 

  93. Low PS, Willardson BM, Thevenin B, Kannan R, Mehler E, Geahlen RL, Harrison M (1990) The other functions of erythrocyte membrane band 3. In: Hamasaki N, Jennings ML (eds) Anion transport protein of the red cell membrane. Elsevier, Amsterdam

    Google Scholar 

  94. Luckner H (1939) Über die Geschwindigkeit des Austausches der Atemgase im Blut. Pfluger Arch Gesamte Physiol 241: 753–778

    CAS  Google Scholar 

  95. Luckner H (1948) Die Temperaturabhangigkeit des Anionenaustausches roter Blutkorperchen. Pflugers Arch Gesamte Physiol 250: 303–311

    CAS  Google Scholar 

  96. Lutz HU, Fasler S, Stammler P, Bussolino F, Arese P (1988) Naturally occurring anti-band 3 antibodies and complement in phagocytosis of oxidatively-stressed and in clearance of senescent red cells. Blood Cells 14: 175–195

    PubMed  CAS  Google Scholar 

  97. Lux SE, John KM, Kopito RR, Lodish HF (1989) Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proc Natl Acad Sci USA 86: 9089–9093

    PubMed  CAS  Google Scholar 

  98. Milanick MA, Gunn RB (1982) Proton-sulfate co-transport. Mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells. J Gen Physiol 79: 87–113

    PubMed  CAS  Google Scholar 

  99. Milanick MA, Gunn RB (1984) Proton-sulfate cotransport: external proton activation of sulfate influx into human red blood cells. Am J Physiol 247: C247–C259

    PubMed  CAS  Google Scholar 

  100. Milanick MA, Gunn RB (1986) Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites? Am J Physiol 250: C955–C969

    PubMed  CAS  Google Scholar 

  101. Mond R (1927) Die Umkehr der Anionenpermeabilität roter Blutkorperchen in eine elektive Durchlassigkeit fur Kationen. Pflugers Arch Gesamte Physiol 217: 618

    CAS  Google Scholar 

  102. Mueller H, Lutz HU (1983) Binding of autologous IgG to human red blood cells before and after ATP-depletion. Selective exposure of binding sites (autoantigens) on spectrin-free vesicles. Biochim Biophys Acta 729: 249–257

    CAS  Google Scholar 

  103. Mueller TJ, Morrison M (1977) Detection of a variant of protein 3, the major transmembrane protein of the human erythrocyte. J Biol Chem 252: 6573–6576 (abstract)

    PubMed  CAS  Google Scholar 

  104. Nanri H, Hamasaki N, Minakami S (1983) Affinity labeling of erythrocyte band 3 proteins with pyridoxal 5-phosphate involvement of the 35000 dalton fragment in anion transport. J Biol Chem 258: 5985–5989

    PubMed  CAS  Google Scholar 

  105. Nasse H (1878) Untersuchungen über den Austritt und Eintritt von Stoffen (Transudation und Diffusion) durch die Wand der Haargefässe. Pflugers Arch 16: 604

    Google Scholar 

  106. Nigg EA, Cherry RJ (1980) Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface, protein rotational diffusion measurements. Proc Natl Acad Sci USA 77: 4702–4706

    PubMed  CAS  Google Scholar 

  107. Nikinmaa M, Railo E (1987) Anion movements across lamprey (Lampetra fluviatilis) red cell membrane. Biochim Biophys Acta 899: 134–136

    PubMed  CAS  Google Scholar 

  108. Oikawa K, Lieberman DM, Reithmeier RAF (1985) Confirmation and stability of the anion transport protein of human erythrocyte membranes. Biochemistry 24: 2843–2848

    PubMed  CAS  Google Scholar 

  109. Palfrey HC, Rao MC (1983) Na/K/Cl co-transport and its regulation. J Exp Biol 106: 43–54

    PubMed  CAS  Google Scholar 

  110. Palumbo AP, Isobe M, Huebner K, Shane S, Rovera G, Demuth D, Curtis PJ, Ballantine M, Croce CM, Showe LC (1986) Chromosomal localization of a human band 3-like gene to region 7q35 to 7q36. Am J Hum Genet 39: 307–316

    PubMed  CAS  Google Scholar 

  111. Passow H (1969) Passive ion permeability of the erythrocyte membrane. Prog Biophys Mol Biol 19: 425–467

    Google Scholar 

  112. Passow H (1986) Molecular aspects of band 3 protein-mediated anion transport across the red cell membrane. Rev Physiol Biochem Pharmacol 103: 61–203

    PubMed  CAS  Google Scholar 

  113. Restrepo D, Kozody DJ, Spinelli LJ, Knauf PA (1989) Cl-Cl exchange in promyelocyte HL-60 cells follows simultaneous rather than ping-pong kinetics. Am J Physiol 257: C520–C527

    PubMed  CAS  Google Scholar 

  114. Salhany JM, Gaines KC (1981) Connections between cytoplasmic proteins and the erythrocyte membrane. Trends Biochem Sci 6: 13–15

    CAS  Google Scholar 

  115. Salhany JM, Rauenbuehler PB (1983) Kinetics and mechanism of erythrocyte anion exchange. J Biol Chem 258: 245–249

    PubMed  CAS  Google Scholar 

  116. Salhany JM, Shaklai N (1979) Functional properties of human hemoglobin bound to the erythrocyte membrane. Biochemistry 18: 893–899

    PubMed  CAS  Google Scholar 

  117. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennstrom B (1986) The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324: 635–640

    PubMed  CAS  Google Scholar 

  118. Scarpa A, Cecchetto A, Azzone GF (1968) Permeability of erythrocytes to anion and the regulation of cell volume. Nature 219: 529–531

    PubMed  CAS  Google Scholar 

  119. Schmidt A (1987) Über die Kohlensäure in der Blutkorperchen. Ber k Sachs Ges Wiss (Math- physikal CI I) 19: 30

    Google Scholar 

  120. Schnell KF (1977) Anion transport across the red blood cell membrane mediated by dielectric pores. J Membr Biol 37: 99–136

    PubMed  CAS  Google Scholar 

  121. Schuster VL, Bonsib SM, Jennings ML (1986) Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry. Am J Physiol 251: C347–C355

    PubMed  CAS  Google Scholar 

  122. Shoemaker DG, Bender CA, Gunn RB (1987) Phosphate transport in human red cells. J Gen Physiol 90: 37a–37a (abstract)

    Google Scholar 

  123. Shoemaker DG, Bender CA, Gunn RB (1988) Sodium-phosphate cotransport in human red blood cells. J Gen Physiol 92: 449–474

    PubMed  CAS  Google Scholar 

  124. Showe LC, Ballantine M, Huebner K (1987) Localization of the gene for the erythroid anion exchange protein, band 3 (EMPB3), to human chromosome 17. Genomics 1: 71–76

    PubMed  CAS  Google Scholar 

  125. Simons TJB (1986) The role of anion transport in the passive movement of lead across the human red cell membrane. J Physiol (Lond) 378: 287–312

    CAS  Google Scholar 

  126. Srivastava SK, Beutler E (1969) Transport of oxidized glutathione from human erythrocytes. J Biol Chem 244: 9–16

    PubMed  CAS  Google Scholar 

  127. Steck TL (1978) The band 3 protein of the human red cell membrane: a review. J Supramol Struct 8: 311–324

    PubMed  CAS  Google Scholar 

  128. Stone DK, Seldin DW, Kokko JP, Jacobson HR (1983) Anion dependence of rabbit medullary collecting duct acidification. J Clin Invest 71: 1505–1508

    PubMed  CAS  Google Scholar 

  129. Strapazon E, Steck TL (1976) Binding of rabbit muscle aldolase to Band 3, the predominant polypeptide of the human erythrocyte membrane. Biochemistry 15: 1421–1424

    PubMed  CAS  Google Scholar 

  130. Swanson ML, Keast RK, Jennings ML, Pessin JE (1988) Heterogeneity in the human erythrocyte Band 3 anion-transporter revealed by Triton X-114 phase partitioning. Biochem J 255: 229–234

    PubMed  CAS  Google Scholar 

  131. Swick-Vogelaar N (1989) Structural and mechanistic motifs in membrane proteins: the three- dimensional modeling of rhodopsin, band 3 and nicotinic acetylcholine receptor. Thesis, California Institute of Technology, Pasadena

    Google Scholar 

  132. Tanner MJA, Martin PG, High S (1988) The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J 256: 703 - 712

    PubMed  CAS  Google Scholar 

  133. Torrubia JOA, Garay R (1989) Evidence for a major route for zinc uptake in human red blood cells: [Zn(HCO3)2Cl]-influx through the [CI - /HCO3 -] anion exchanger. J Cell Physiol 138: 316–322

    PubMed  CAS  Google Scholar 

  134. Tosteson DC (1959) Halide transport in red blood cells. Acta Physiol Scand 46: 19–46

    CAS  Google Scholar 

  135. Tsai I-H, Murthy SN, Steck TL (1981) Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 257: 1438–1442

    Google Scholar 

  136. Tsuji A, Kawasaki K, Ohnishi S-I (1988) Regulation of band 3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork. Biochemistry 27: 7447–7452

    PubMed  CAS  Google Scholar 

  137. Tsuji A, Ohnishi S (1986) Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state. Biochemistry 25: 6133–6139

    PubMed  CAS  Google Scholar 

  138. Tyler JM, Reinhardt BN, Branton D (1980) Associations of erythrocyte membrane proteins: binding of purified bands 2.1 and 4.1 to spectrin. J Biol Chem 255: 7034–7039

    PubMed  CAS  Google Scholar 

  139. Wagner S, Vogel R, Lietzke R, Koob R, Drenckhahn D (1987) Immunochemical characterization of a band 3-like anion exchanger in collecting duct of human kidney. Am J Physiol 253: F213–F221

    PubMed  CAS  Google Scholar 

  140. Wainwright SD, Tanner MJA, Martin GEM, Yendle JE, Holmes C (1989) Monoclonal antibodies to the membrane domain of the human erythrocyte anion transport protein: localization of the C-terminus of the protein to the cytoplasmic side of the red cell membrane and distribution of the protein in some human tissues. Biochem J 258: 211–220

    PubMed  CAS  Google Scholar 

  141. Walder JA, Chatterjee R, Steck TL, Low PS, Musso GF, Kaiser ET, Rogers PH, Arnone A (1984) The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane. J Biol Chem 259: 10238–10246

    PubMed  CAS  Google Scholar 

  142. Wallert MA (1989) pH regulation in adult cardiac myocytes. Thesis, Emory University, Atlanta

    Google Scholar 

  143. Warburg EJ (1922) Studies on carbonic acid compounds and hydrogen ion activities in blood and salt solutons. A contribution to the theory of the equation of Lawrence J. Henderson and K. A. Hasselbalch. Biochem J 16: 153–340

    CAS  Google Scholar 

  144. Wenzl E, Machen TE (1989) Intracellular pH dependence of buffer capacity and anion exchange in the parietal cell. Am J Physiol 257: G741–G747

    PubMed  CAS  Google Scholar 

  145. Wieth JO, Bjerrum PJ (1982) Titration of transport and modifier sites in the red cell anion transport system. J Gen Physiol 79: 253–282

    PubMed  CAS  Google Scholar 

  146. Wieth JO, Bjerrum PJ, Borders CL Jr (1982) Irreversible inactivation of red cell chloride exchange with phenylgloxal, an arginine specific reagent. J Gen Physiol 79: 283–312

    PubMed  CAS  Google Scholar 

  147. Wieth JO, Bjerrum PJ, Brahm J, Andersen OS (1982) The anion transport protein of the red cell membrane. A zipper mechanism of anion exchange. Tokai J Exp Clin Med 7 [Suppl]: 91–101

    PubMed  CAS  Google Scholar 

  148. Wieth JO, Brahm J (1985) Cellular anion transport. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology vol 1. Raven, New York, pp 49–89

    Google Scholar 

  149. Zaki L, Julien T (1985) Anion transport in red blood cells and arginin specific reagents. Interaction between the substrate binding site and the binding site of arginine specific reagents. Biochim Biophys Acta 818: 325–332

    PubMed  CAS  Google Scholar 

  150. Zenke M, Kahn P, Disela C, Vennstrom B, Leutz A, Keegan K, Hayman MJ, Choi H-R, Yew N, Engel JD, Beug H (1988) v-erbA specifically suppresses transcriptions of the avian erythrocyte anion transporter (band 3) gene. Cell 52: 107–119

    PubMed  CAS  Google Scholar 

  151. Zuntz N (1867) Über den Einfluss des Partialdrucks der Kohlensaure auf die Verteilung dieses Gases im Blute. Centr Med Wiss 529

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gunn, R.B. (1992). Anion Exchange Mechanism of Band 3 and Related Proteins. In: Schafer, J.A., Christensen, P., Ussing, H.H., Giebisch, G.H. (eds) Membrane Transport in Biology. Membrane Transport in Biology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76983-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76983-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76985-6

  • Online ISBN: 978-3-642-76983-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics