Skip to main content

Ion Channels in Epithelial Tissue: Single-Channel Properties

  • Chapter

Part of the book series: Membrane Transport in Biology ((MEMBRANE,volume 5))

Abstract

A major function of a cell membrane is to form a barrier between the internal environment of the cell and the external world. However, a complete barrier to the outside world is unacceptable since to survive cells require some ability to communicate with their external environment. Communication consists of a variety of different processes mediated by membrane proteins which serve as signal transduction pathways or as mediators to maintain the intracellular milieu. One subset of these proteins allows movement of ions across the cell membrane. An even more restrictive class of ion transport proteins are those which involve transmembrane movement of ions through “channels.” Ion channels form an interesting class of membrane proteins which have specifically evolved to provide an essentially aqueous pathway through the otherwise highly hydrophobic barrier of the cell membrane. As such, they are capable of carrying relatively large numbers of ions per unit time. In general, to regulate the number of ions which cross the cell membrane, a channel protein undergoes conformational changes which produce states of the molecule which either contain an aqueous pathway across the protein or which have no such pathway for ions. Typically, there may be several “open” states which allow ion movement as well as several “closed” states in which there is no ionic current across the protein. Since the primary function of channel proteins is the transport of ions across the membrane, the conformational changes which lead to alterations in current flow have been the subject of significant investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramcheck FJ, Van Driessche W, Helman SI (1985) Autoregulation of apical membrane Na+ permeability of tight epithelia. Noise analysis with amiloride and CGS 4270. J Gen Physiol 85: 555–582

    Article  PubMed  CAS  Google Scholar 

  2. Aelvoet I, Erlij D, Van Driessche W (1988) Activation and blockage of a calcium-sensitive cation-selective pathway in the apical membrane of toad urinary bladder. J Physiol (Lond) 398: 555–574

    CAS  Google Scholar 

  3. Al-Bazzaz F, Yadava VP, Westenfelder C (1981) Modification of Na and CI transport in canine tracheal mucosa by prostaglandins. Am J Physiol 240: F101–F105

    PubMed  CAS  Google Scholar 

  4. Allen JC, Mills JW (1989) Calcium flux, volume, and ions in MDCK cells treated with verapamil and dibutryl cyclic AMP. FASEB J 3: A863

    Google Scholar 

  5. Alvarez-Leefmans FJ, Gamino SM, Giraldez F, Gonzalez-Serratos H (1986) Intracellular free magnesium in frog skeletal muscle fibres measured with ion-selective micro-electrodes. J Physiol (Lond) 378: 461–483

    CAS  Google Scholar 

  6. Argent BE, Arkle S, Gray MA, Greenwell JR (1987) Two types of calcium-sensitive cation channels in isolated rat pancreatic duct cells. J Physiol (Lond) 386: 82P–82 P

    Google Scholar 

  7. Armstrong CM, Swenson RP, Taylor SR (1982) Block of squid axon K channels by internally and externally applied barium ions. J Gen Physiol 80: 663–682

    Article  PubMed  CAS  Google Scholar 

  8. Armstrong CM, Taylor SR (1980) Interaction of barium ions with potassium channels in squid giant axons. Biophys J 30: 473–488

    Article  PubMed  CAS  Google Scholar 

  9. Ausiello DA, Sorscher EJ, Harlin C, Benos DJ (1989) Subunits of the epithelial sodium channel may be G-proteins. FASEB J 3: A228

    Google Scholar 

  10. Bacskai BJ, Friedman PA (1990) Parathyroid hormone activates apical membrane calcium channels in cultured distal kidney cells. Kidney Int 37: 205–205

    Google Scholar 

  11. Barish ME (1983) A transient calcium-dependent chloride current in immature Xenopus oocyte. J Physiol (Lond) 342: 309–325

    CAS  Google Scholar 

  12. Barrett JN, Magleby KL, Pallotta BS (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol (Lond) 331: 211–230

    CAS  Google Scholar 

  13. Barrett KE (1989) A role for arachidonic acid in the induction of epithelial chloride secretion. FASEB J 3: A281

    Google Scholar 

  14. Baxendale LM (1988) Insulin increases apical sodium channel density in A6 epithelia. FASEB J 2: A748–A748

    Google Scholar 

  15. Baxendale LM, Helman SI (1986) A three state model for regulation of apical membrane Na+ transport of epithelial cells. Fed Proc 45: 516–516

    Google Scholar 

  16. Bayliss JM, Reeves WB, Andreoli TE (1989) Hypertonicity collapses CI channels in rabbit renal medullary vesicles. Clin Res 37: 485A

    Google Scholar 

  17. Benos DJ, Saccomani G, Sariban-Sohraby S (1987) The epithelial sodium channel. Subunit number and location of the amiloride binding site. J Biol Chem 262: 10613–10618

    Google Scholar 

  18. Bertorello A, Aperia A (1989) Regulation of Na+-K+-ATPase activity in kidney proximal tubules: involvement of GTP binding proteins. Am J Physiol 256: F57–F62

    PubMed  CAS  Google Scholar 

  19. Bolivar JJ, Cereijido M (1987) Voltage and Ca2+ -activated K+ channel in cultured epithelial cells (MDCK). J Membr Biol 97: 43–51

    Article  PubMed  CAS  Google Scholar 

  20. Bonvalet JP, Pradelles P, Farman N (1987) Segmental synthesis and actions of prostaglandins along the nephron. Am J Physiol 253. F377–F387

    PubMed  CAS  Google Scholar 

  21. Brand K, Spokes K, Silva P, Epstein FH (1990) Atrial natiuretic peptide activates phospholipase C (PLC) in rat papilla. Kidney Int 37: 336

    Google Scholar 

  22. Bridges RJ, Benos DJ (1990) Reconstitution of epithelial ion channels In: Helman SI, Van Driessche W (eds) Current topics in membranes and transport: channels and noise in epithelial tissues. Academic, New York, pp 283–312

    Google Scholar 

  23. Brown AM, Yatani A, Imoto Y, Kirsch G, Hamm H, Codina J, Mattera R, Birnbaumer L (1988) Direct coupling of G proteins to ionic channels. Cold Spring Harbor Symp Quant Biol 53: 365–374

    PubMed  CAS  Google Scholar 

  24. Brown PD, Loo DD, Wright EM (1988) Ca2+-activated K+ channels in the apical membrane of Necturus choroid plexus. J Membr Biol 105: 207–219

    Article  PubMed  CAS  Google Scholar 

  25. Cantiello HF, Patenaude CR, Ausiello DA (1989) G protein subunit αi-3 activates a pertussis toxin-sensitive Na+ channel from the epithelial cell line, A6. J Biol Chem 264: 20867–20870

    CAS  Google Scholar 

  26. Cantiello HF, Patenaude CR, Ausiello DA (1990) G-protein activation of an epithelial sodium channel is mediated via phospholipid metabolites. Kidney Int 37: 213

    Google Scholar 

  27. Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242: 50–61

    Article  PubMed  CAS  Google Scholar 

  28. Chang D, Dawson DC (1988) Digitonin-permeabilized colonic cell layers. Demonstration of calcium-activated basolateral K+ and CI conductances. J Gen Physiol 92: 281–306

    Article  PubMed  CAS  Google Scholar 

  29. Chase H, Wong S (1989) Exposure to hypotonic media results in a large increase in intracellular free [Ca] in epithelial cells. FASEB J 3: A983–A983

    Google Scholar 

  30. Christensen O (1987) Mediation of cell volume regulation by Ca2+ influx through stretch- activated channels. Nature 330: 66–68

    Article  PubMed  CAS  Google Scholar 

  31. Christensen O, Zeuthen T (1987) Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential. Pflugers Arch 408: 249–259

    Article  PubMed  CAS  Google Scholar 

  32. Christine CW, Laskowski FH, Gitter AH, Gross P, Fromter E (1987) Chloride-selective single ion channels in the apical membrane of cultured collecting duct principal cells. Pflugers Arch 408: R32

    Article  Google Scholar 

  33. Chu LLH, Edelman IS (1972) Cordycepin and alpha-amanitin: inhibitors of transcription as probes of aldosterone action. J Membr Biol 10: 291–310

    Article  PubMed  CAS  Google Scholar 

  34. Cliff WH, Frizzell RA (1989) Adenosine increases CI conductance in T84 epithelial cells. FASEB J 3: A1148

    Google Scholar 

  35. Colquhoun D, Hawkes AG (1983) The principles of the stochastic interpretation of ion channel mechanisms. In: Sakmann B Neher E (eds) Single channel recording. Plenum, New York, pp 135–175

    Google Scholar 

  36. Cooper KE, Tang JM, Rae JL, Eisenberg RS (1986) A cation channel in frog lens epithelia responsive to pressure and calcium. J Membr Biol 93: 259–269

    Article  PubMed  CAS  Google Scholar 

  37. Cornejo M, Guggino SE, Guggino WB (1987) Modification of Ca2+-activated K+ channels in cultured medullary thick ascending limb cells by N-bromoacetamide. J Membr Biol 99: 147–155

    Article  PubMed  CAS  Google Scholar 

  38. Cornejo M, Guggino SE, Guggino WB (1989) Ca2+-activated K+ channels from cultured renal medullary thick ascending limb cells: effects of pH. J Membr Biol 110: 49–55

    Article  PubMed  CAS  Google Scholar 

  39. Cornejo M, Guggino SE, Sastre, A, Guggino WB (1989) Isomeric yohimbine alkaloids block calcium-activated K+ channels in medullary thick ascending limb cells of rabbit kidney. J Membr Biol 107: 25–33

    Article  PubMed  CAS  Google Scholar 

  40. Cox T (1989) Single channel records from dissociated frog tadpole skin cells. FASEB J 3: A861

    Google Scholar 

  41. Das S, Palmer LG (1989) Extracellular Ca controls outward rectification by apical cation channels in toad urinary bladder: patch-clamp and whole-bladder studies. J Membr Biol 107: 157–168

    Article  PubMed  CAS  Google Scholar 

  42. Davis CW, Finn AL (1985) Cell volume regulation in frog urinary bladder. Fed Proc 44: 2520–2525

    PubMed  CAS  Google Scholar 

  43. Dawson DC (1987) Properties of epithelial potassium channels. Curr Top Memb Transp 28: 41–71

    CAS  Google Scholar 

  44. Dawson DC (1987) Cellular mechanisms for K transport across epithelial cell layers. Semin Nephrol 7: 185–192

    PubMed  CAS  Google Scholar 

  45. Dawson DC, Richards NW (1990) Basolateral K conductance: role in regulation of NaCl absorption and secretion. Am J Physiol 259: 081–095

    Google Scholar 

  46. Dawson DC, Van Driessche W, Helman SI (1988) Osmotically basolateral induced K+ conductance in turtle colon: lidocaine-induced K+ channel noise. Am J Physiol 254: C165–C174

    PubMed  CAS  Google Scholar 

  47. Dawson DC, Wilkinson DJ, Richards NW (1990) Basolateral K channel noise: signals from the dark side. In Curr Top Membr Transp Channels and noise in epithelial tissues, Helman SI, Van Oriessche W (eds), Academic, New York, pp 191–212

    Google Scholar 

  48. de Sousa RC, Grosso A (1981) The mode of action of vasopressin: membrane microstructure and biological transport. J Physiol (Paris) 77: 643–669

    Google Scholar 

  49. Demarest JR, Loo DD, Sachs G (1989) Activation of apical chloride channels in the gastric oxyntic cell. Science 245: 402–404

    Article  PubMed  CAS  Google Scholar 

  50. Desir GV (1989) Reconstitution and partial purification of an amiloride-sensitive non-selective cation channel from the rabbit kidney. Clin Res 37: 488A

    Google Scholar 

  51. Dillingham MA, Dixon BS, Anderson RJ (1987) Calcium modulates vasopressin effect in rabbit cortical collecting tubule. Am J Physiol 252: F115–F121

    PubMed  CAS  Google Scholar 

  52. Eaton DC, Brodwick MS (1980) Effects of barium on the potassium conductance of squid axon. J Gen Physiol 75: 727–750

    Article  PubMed  CAS  Google Scholar 

  53. Eaton DC, Hamilton KL (1988) The amiloride-blockable sodium channel of epithelial Tissue. In: Narahashi T (ed) Ion channels. Plenum, New York, pp 251–282

    Google Scholar 

  54. Eaton DC, Ling BN (1989) The effect of cholera toxin, pertussis toxin, and GTP-S on highly selective sodium channels in A6 cells. Kidney Int 37: 373a

    Google Scholar 

  55. Eaton DC, Marunaka Y (1988) Comparison between the effects of amiloride and CDPC, an amiloride analogue, on amiloride-sensitive sodium channels from cultured renal cells. FASEB J 2: A750

    Google Scholar 

  56. Eaton DC, Marunaka Y (1990) Ion channel fluctuations: “noise” and single channel measurements. In: Helman SI, Van Driessche W (eds) Current topics in membranes and transport: channels, noise and impedance in epithelia. Academic, New York pp 61–114

    Google Scholar 

  57. Eaton DC, Marunaka Y (1990) Effects of cyclic AMP and cholera toxin on an amiloride- blockable sodium channel in renal cells. FASEB J 4: A549

    Google Scholar 

  58. Evans MG, Marty A (1986) Potentiation of muscarinic and alphaadrenergic responses by an analogue of guanosine 5-triphosphate. Proc Natl Acad Sci USA 83: 4099–4103

    Article  PubMed  CAS  Google Scholar 

  59. Evans MG, Marty A (1986) Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. J Physiol (Lond) 378: 437–460

    CAS  Google Scholar 

  60. Eveloff JL, Warnock DG (1987) Activation of ion transport systems during cell volume regulation. Am J Physiol 252: F1–F10

    PubMed  CAS  Google Scholar 

  61. Ewald DA, Williams A, Levitan IB (1985) Modulation of single Ca-dependent K-channel activity by protein phosphorylation. Nature 315: 503–506

    Article  PubMed  CAS  Google Scholar 

  62. Falke L, Edwards KL, Pickard BG, Misler S (1987) A stretch-activated anion channel in cultured tobacco cells. Biophys J 51: 251a

    Google Scholar 

  63. Falke LC, Misler S (1989) Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells. Proc Natl Acad Sci USA 86: 3919–3923

    Article  PubMed  CAS  Google Scholar 

  64. Fichtner H, Frobe U, Busse R, Kohlhardt M (1987) Single non-selective cation channels and Ca2+ -activated K+ channels in aortic endothelial cells. J Membr Biol 98: 125–133

    Article  PubMed  CAS  Google Scholar 

  65. Filipovic D, Sackin H (1990) Stretch-activated calcium currents in proximal tuble. FASEB J 4: A447

    Google Scholar 

  66. Findlay I (1984) A patch-clamp study of potassium channels and whole-cell currents in acinar cells of the mouse lacrimal gland. J Physiol (Lond) 350: 179–195

    CAS  Google Scholar 

  67. Findlay I, Petersen OH (1983) Acetylcholine stimulates a Ca-dependent Cl- conductance in mouse lacrimal acinar cells. Pflugers Arch 403: 328–330

    Article  Google Scholar 

  68. Fishman HM, Lenchtag HR (1990) Electrical noise in physics and biology In: Helman SI, Van

    Google Scholar 

  69. Foskett JK, Spring KR (1985) Involvement of calcium and cytoskeleton in gallbladder epithelial cell volume regulation. Am J Physiol 248: C27–C36

    PubMed  CAS  Google Scholar 

  70. Fox JA, Pfeffer BA, Fain GL (1988) Single-channel recordings from cultured human retinal pigment epithelial cells. J Gen Physiol 91: 193–222

    Article  PubMed  CAS  Google Scholar 

  71. Frace AM, Eaton DC (1987) Chemical modification of amino groups on calcium activated K channels of GH3 cells. Biophys J 51: 55a

    Google Scholar 

  72. Frehland E (1979) Theory of transport noise in membrane channels with open-closed kinetics. Biophys Struct Mech 5: 91–106

    Article  PubMed  CAS  Google Scholar 

  73. Frehland E, Hoshiko T, Machlup S (1983) Competitive blocking of apical sodium channels in epithelia. Biophys Acta 732: 636–646

    Article  CAS  Google Scholar 

  74. Friedman PA (1988) Renal calcium transport: sites and insights. News Physiol Sci 3: 17–21

    Google Scholar 

  75. Frindt G, Palmer LG (1987) Ca-activated K channels in apical membrane of mammalian CCT, and their role in K secretion. Am J Physiol 252: F458–F467

    PubMed  CAS  Google Scholar 

  76. Frindt G, Palmer LG (1989) Low-conductance K channels in apical membrane of rat cortical collecting tubule. Am J Physiol 256: F143–F151

    PubMed  CAS  Google Scholar 

  77. Frindt G, Sackin H, Palmer LG (1990) Whole-cell currents in rat cortical collecting tubule: low-Na diet increases amiloride-sensitive conductance. Am J Physiol 258: F562–F567

    PubMed  CAS  Google Scholar 

  78. Frings S, Purves RD, MacKnight ADC (1988) Single-channel recordings from the apical membrane of the toad urinary bladder epithelial cell. J Membr Biol 106: 157–172

    Article  PubMed  CAS  Google Scholar 

  79. Frizzell RA, Halm DR (1990) Chloride channels in epithelial cells, In: Helman SI, Van Driessche W (eds) Current topics in membranes and transport: channels, noise, and impedance in epithelia. Academic, New York pp 248–282

    Google Scholar 

  80. Frizzell RA, Halm DR, Rechkemmer G, Shoemaker RL (1986) Chloride channel regulation in secretory epithelia. Fed Proc 45: 2727–2731

    PubMed  CAS  Google Scholar 

  81. Frizzell RA, Rechkemmer G, Shoemaker RL (1986) Altered regulation of airway eptihelial cell chloride channels in cystic fibrosis. Science 233: 558–560

    Article  PubMed  CAS  Google Scholar 

  82. Frizzell RA, Schoumacher RA, Halm DR (1987) Chloride channel regulation in cystic fibrosis epithelia. Prog Clin Biol Res 254: 101–113

    PubMed  CAS  Google Scholar 

  83. Fuchs W, Larsen EH, Lindemann B (1977) Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol (Lond) 267: 137–166

    CAS  Google Scholar 

  84. Furlong TJ, Spring KR (1989) Mechanisms underlying volume regulatory decrease by Necturus gallbladder epithelium. Kidney Int 35: 155

    Google Scholar 

  85. Furuya K, Enomoto K, Furuya S, Yamagishi S, Edwards C, Oka T (1989) Single calcium- activated potassium channel in cultured mammary epthelial cells. Pflugers Arch 414: 118–124

    Article  PubMed  CAS  Google Scholar 

  86. Gallacher DV, Maruyama Y, Petersen OH (1984) Patch-clamp study of rubidium and potassium conductances in single cation channels from mammalian exocrine acini. Plfugers Arch 401: 361–367

    Article  CAS  Google Scholar 

  87. Gallacher DV, Morris AP (1986) A patch-clamp study of potassium currents in resting and acetylcholine-stimulated mouse submandibular acinar cells. J Physiol (Lond) 373: 379–395

    CAS  Google Scholar 

  88. Garty H (1986) Mechanisms of aldosterone action in tight epithelia. J Membr Biol 90: 193–205

    Article  PubMed  CAS  Google Scholar 

  89. Garty H, Benos DJ (1988) Characteristics and regulatory mechanisms of the amiloride- blockable Na+ channel. Physiol Rev 68: 309–373

    PubMed  CAS  Google Scholar 

  90. Garty H, Edelman IS (1983) Amiloride-sensitive trypsinization of apical sodium channels: analysis of hormonal regulation of sodium transport in toad bladder. J Gen Physiol 81: 785–803

    Article  PubMed  CAS  Google Scholar 

  91. Garty H, Yeger O, Yanovsky A, Asher C (1988) Guanosine nucleotide-dependent activation of the amiloride-blockable Na+ channel. Am J Physiol 256: F965–F969

    Google Scholar 

  92. George AL Jr, Staub O, Geering K, Rossier BC, Kleyman TR, Kraehenbuhl J-P (1989) Functional expression of the amiloride-sensitive sodium channel in Xenopus oocytes. Proc Natl Acad Sci USA 86: 7295–7298

    Article  PubMed  CAS  Google Scholar 

  93. Germann WJ, Ernst SA, Dawson DC (1986) Resting and osmotically induced basolateral K conductances in turtle colon. J Gen Physiol 88: 253–274

    Article  PubMed  CAS  Google Scholar 

  94. Giebisch G, Hunter M, Kawahara K (1990) Apical potassium channels in Amphiuma diluting segment: effect of barium. J Physiol (Lond) 420: 313–323

    CAS  Google Scholar 

  95. Giraldez F, Sepulveda FV, Sheppard DN (1988) A chloride conductance activated by adenosine 3′,5′ -cyclic monophosphate in the apical membrane of necturus enterocytes. J Physiol (Lond) 395: 597–623

    CAS  Google Scholar 

  96. Gitter AH, Beyenbach K, Christie WC, Gross P, Minuth WW, Fromter E (1987) High- conductance K+ channel in apical membranes of principal cells cultured from rabbit renal cortical collecting duct anlagen. Pflugers Arch 408: 282–290

    Article  PubMed  CAS  Google Scholar 

  97. Gogelein H (1990) Ion channels in mammalian proximal renal tubules. Renal Physiol Biochem 13: 8–25

    PubMed  CAS  Google Scholar 

  98. Gogelein H, Greger R (1984) Single channel recordings from basolateral and apical membranes of renal proximal tubules. Pflugers Arch 401: 424–426

    Article  PubMed  CAS  Google Scholar 

  99. Gogelein H, Greger R (1986) Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta). Pflugers Arch 406: 198–203

    Article  PubMed  CAS  Google Scholar 

  100. Gogelein H, Greger R (1986) A voltage-dependent ionic channel in the basolateral membrane of late proximal tubules of the rabbit kidney. Pflugers Arch 407 [Suppl 2]: S142–S148

    Article  PubMed  Google Scholar 

  101. Gogelein H, Greger R (1987) Properties of single K+ channels in the basolateral membrane of rabbit proximal straight tubules. Pflugers Arch 410: 288–295

    Article  PubMed  CAS  Google Scholar 

  102. Gogelein H, Pfannmuller B (1989) The nonselective cation channel in the basolateral membrane of rat exocrine pancreas (inhibition by 3′,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) and activation by stilbene disulfonates). Pflugers Arch 413: 287–298

    Article  PubMed  CAS  Google Scholar 

  103. Gogelein H, Schlatter E, Greger R (1987) The small conductance chloride channel in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Pflugers Arch 409: 122–125

    Article  PubMed  CAS  Google Scholar 

  104. Gogelein H, Van Driessche W (1981) Noise analysis of the K+ current through the apical membrane of Necturus gallbladder. J Membr Biol 63: 243–254

    Article  PubMed  CAS  Google Scholar 

  105. Gogelein H, Van Driessche W (1981) Capacitive and inductive low frequency impedances of Necturus gallbladder epithelium. Pflugers Arch 389: 105–113

    Article  PubMed  CAS  Google Scholar 

  106. Gogelein H, Van Driessche W (1981) The effect of electrical gradients on current fluctuations and impedance recorded from Necturus gallbladder. J Membr Biol 60: 199–209

    Article  PubMed  CAS  Google Scholar 

  107. Greenwald JE, Needleman P, Wilkins M, Schreiner GF (1990) Renal synthesis of atriopeptin in physiology and pathophysiology. Kidney Int 37: 339

    Google Scholar 

  108. Greger R, Gogelein H (1987) Role of K+ conductive pathways in the nephron. Kidney Int 31: 1055–1064

    Article  PubMed  CAS  Google Scholar 

  109. Greger R, Oberleithner H, Schlatter E, Cassola AC, Weidtke C (1983) Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pflugers Arch 399: 29–34

    Article  PubMed  CAS  Google Scholar 

  110. Greger R, Schlatter E, Gogelein H (1985) CP channels in the apical cell membrane of the rectal gland “induced” by cAMP. Pflugers Arch 403: 446–448

    Article  PubMed  CAS  Google Scholar 

  111. Greger R, Schlatter E, Gogelein H (1987) Chloride channels in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias): properties of the “large” conductance channel. Pflugers Arch 409: 114–121

    Article  PubMed  CAS  Google Scholar 

  112. Guggino SE, Guggino WB, Green N, Sacktor B (1987) Ca2+-activated KT+ T channels in cultured medullary thick ascending limb cells. Am J Physiol 252: C121–C127

    PubMed  CAS  Google Scholar 

  113. Guggino SE, Suarez-Isla BA, Guggino WB, Sacktor B (1985) Forskolin and antidiuretic hormone stimulate a Ca-activated K channel in cultured kidney cells. Am J Physiol 249: F448–F455

    PubMed  CAS  Google Scholar 

  114. Guharay F, Sachs E (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol (Lond) 352: 685–701

    CAS  Google Scholar 

  115. Gustin MC, Zhou XL MB, Culbertson MR, Kung C (1987) Stretch-activated cation channel in yeast. Biophys J 51: 251a

    Google Scholar 

  116. Hagiwara S, Fukuda J, Eaton DC (1974) Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J Gen Physiol 63: 565–578

    Article  Google Scholar 

  117. Halm DR, Dawson DC (1984) Control of potassium transport by turtle colon: role of membrane potential. Am J Physiol 247: C26–C32

    PubMed  CAS  Google Scholar 

  118. Halm DR, Rechkemmer GR, Schoumacher RA, Frizzell RA (1988) Apical membrane chloride channels in a colonic cell line activated by secretory agonists. Am J Physiol 254: C505–C511

    PubMed  CAS  Google Scholar 

  119. Hamilton KL, Benos DJ (1988) A non-selective cation channel identified from the apical membrane of A6 kidney cells. FASEB J 2: A749

    Google Scholar 

  120. Hamilton KL, Eaton DC (1985) Single-channel recordings from amiloride-sensitive epithelial sodium channel. Am J Physiol 249: C200–C207

    PubMed  CAS  Google Scholar 

  121. Hamilton KL, Eaton DC (1986) Single-channel recordings from two types of amiloride- sensitive epithelial Na+ channels. Membr Biochem 6: 149–171

    Article  PubMed  CAS  Google Scholar 

  122. Hamilton KL, Eaton DC (1986) Cyclic AMP-induced potassium channel activity in the apical membrane of A6 kidney cells. Fed Proc 450: 516

    Google Scholar 

  123. Hamm LL, Simon EE (1987) Roles and mechanisms of urinary buffer excretion. Am J Physiol 253: F595–F605

    PubMed  CAS  Google Scholar 

  124. Hanrahan JW, Alles WP, Lewis SA (1984) Basolateral anion and K+ channels from rabbit urinary bladder epithelium. J Gen Physiol 84: 30a

    Google Scholar 

  125. Hanrahan JW, Alles WP, Lewis SA (1985) Single anion-selective channels in basolateral membrane of a mammalian tight epithelium. Proc Natl Acad Sci USA 82: 7791–7795

    Article  PubMed  CAS  Google Scholar 

  126. Hanrahan JW, Wills NK, Phillips JE, Lewis SA (1986) Basolateral K channels in an insect epithelium. Channel de conductance, and block by barium. J Gen Physiol 87: 443–466

    Article  PubMed  CAS  Google Scholar 

  127. Harris HW Jr, Wade JB, Handler JS (1986) Fluorescent markers to study membrane retrieval in antidiuretic hormone-treated toad urinary bladder. Am J Physiol 251: C274–C278

    PubMed  CAS  Google Scholar 

  128. Hays SR, Baum M, Kokko JP (1987) Effects of protein kinase C activation on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule. J Clin Invest 80: 1561–1570

    Article  PubMed  CAS  Google Scholar 

  129. Hayslett JP, Gogelein H, Kunzelman K, Greger R (1987) Characteristics of apical chloride channels in human colon cells (HT29). Pflugers Arch 410: 487–494

    Article  PubMed  CAS  Google Scholar 

  130. Hebert RL, Fredin D, Jacobson HR (1990) PGE2 inhibits sodium transport in the rabbit cortical collecting duct by increasing intracellular calcium. Clin Res 38: 3

    Google Scholar 

  131. Helman SI, Cox TC, Van Driessche W (1983) Hormonal control of apical membrane Na transport in epithelia Studies with fluctuation anlysis. J Gen Physiol 82: 201–220

    Article  PubMed  CAS  Google Scholar 

  132. Helman SI, Kizer NL (1990) Apical sodium ion channels of tight epithelia as viewed from the perspective of noise analysis. In: Helman SI, Van Driessche W (eds) Current topics in membranes and transport: channels and noise in epithelial tissues. Academic, New York 117–155

    Google Scholar 

  133. Helman SI, Koeppen BM, Beyenbach KW, Baxendale LM (1985) Patch clamp studies of apical membranes of renal cortical collecting ducts. Pflugers Arch 405: 71–76.

    Article  Google Scholar 

  134. Higashida H, Brown DA (1988) Ca2+-dependent k+ channels in neuroblastoma hybrid cells activated by intracellular inositol trisphosphate and extracellular bradykinin. FEBS Lett 238: 395–400

    Article  PubMed  CAS  Google Scholar 

  135. Hille B (1984) Ionic channels of excitable membranes. Sinauer, Sunderland, pp 1–426

    Google Scholar 

  136. Hillyard SD, Van Driessche W (1989) Effects of amiloride on the poorly selective cation channel of larval bullfrog skin. Am J Physiol 256: C168–C174

    PubMed  CAS  Google Scholar 

  137. Hillyard SD, Zeiske W, Van Driessche W (1982) Poorly selective cation channels in the skin of the larval frog (stage less than or equal to XIX). Pflugers Arch 394: 287–293

    Article  PubMed  CAS  Google Scholar 

  138. Hinton CF, Eaton DC (1989) Expression of amiloride-blockable sodium channels in Xenopus oocytes. Am J Physiol 257: C825–C829

    PubMed  CAS  Google Scholar 

  139. Hosey MM, Lazdunski M (1988) Calcium channels: Molecular pharmacology, structure and regulation. J Membr Biol 104: 81–105

    Article  PubMed  CAS  Google Scholar 

  140. Hoshiko T, Grossman RA, Machlup S (1988) Effects of basolateral ouabain, amphotericin B, cyanide and potassium on amiloride noise during voltage clamp of Rana pipiens skin support sodium-amiloride competition. Biochim Biophys Acta 942: 186–198

    Article  PubMed  CAS  Google Scholar 

  141. Hudspeth AJ (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230: 745–752

    Article  PubMed  CAS  Google Scholar 

  142. Humes HD, Simmons CF, Brenner BM (1980) Effect of verapamil on the hydroosmotic response to antidiuretic hormone in toad urinary bladder. Am J Physiol 239: F250–F257

    PubMed  CAS  Google Scholar 

  143. Hunter M (1988) Pressure-induced activation of channels in the basolateral membrane of frog proximal tubule cells. J Physiol 403: 24 P

    Google Scholar 

  144. Hunter M (1989) Stretch-activated channels in single cells of the frog diluting segment. J Physiol 416: 30 P

    Google Scholar 

  145. Hunter M, Giebisch G (1988) Calcium-activated K-channels of Amphiuma early distal tubule: inhibition by ATP. Pflugers Arch 412: 331–333

    Article  PubMed  CAS  Google Scholar 

  146. Hunter M, Kawahara K, Giebisch G (1986) Potassium channels along the nephron. Fed Proc 45: 2723–2726

    PubMed  CAS  Google Scholar 

  147. Hunter M, Kawahara K, Giebisch G (1988) Calcium-activated epithelial potassium channels. Miner Electrolyte Metab 14: 48–57

    PubMed  CAS  Google Scholar 

  148. Hunter M, Lopes AG, Bouilpaep EL, Giebisch GH (1984) Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc Natl Acad Sci USA 81: 4237–4239

    Article  PubMed  CAS  Google Scholar 

  149. Hunter M, Lopes AG, Boulpaep E, Giebisch G (1986) Regulation of single potassium ion channels from apical membrane of rabbit collecting tubule. Am J Physiol 251: F725–F734

    PubMed  CAS  Google Scholar 

  150. Hwang T-C, Lu L, Zeitlin PL, Gruenert DC, Huganir R, Guggino WB (1989) CP channels in CF: lack of activation by protein kinase C and cAMP -dependent protein kinase. Science 244: 1351–1353

    Article  PubMed  CAS  Google Scholar 

  151. Jacob TJC (1983) Spontaneous single channel events in Rana pipiens lens epithelial cells. J Physiol 343: 99–100

    Google Scholar 

  152. Jacob TJC, Bangham JA, Duncan G (1985) Characterization of a cation channel on the apical surface of the frog lens epithelium. Q J Exp Physiol 70: 403–421

    PubMed  CAS  Google Scholar 

  153. Jetten AM, Yankaskas JR, Stutts MJ, Willumsen NJ, Boucher RC (1989) Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis epithelia. Science 244: 1472–1475

    Article  PubMed  CAS  Google Scholar 

  154. Josephson IR, Brown AM (1986) Inwardly rectifying single-channel and whole cell K+ currents in rat ventricular myocytes. J Membr Biol 94: 19–35

    Article  PubMed  CAS  Google Scholar 

  155. Katz U (1978) Changes in ionic conductances and in sensitivity to amiloride during the natural moulting cycle of toad skin (Bufo viridis, L). J Membr Biol 38: 1–9

    Article  PubMed  CAS  Google Scholar 

  156. Kawahara K (1985) Ba2 +-sensitive potassium permeability of the apical membrane in newt kidney proximal tubule. J Membr Biol 88: 283 - 292

    Article  PubMed  CAS  Google Scholar 

  157. Kawahara K (1990) A stretch-activated K+ channel in the basolateral membrane of Xenopus kidney proximal tubule cells. Pflugers Arch 415: 624–629

    Article  PubMed  CAS  Google Scholar 

  158. Kawahara K, Hunter M, Giebisch G (1987) Potassium channels in Necturus proximal tubule. Am J Physiol 253: F488–F494

    PubMed  CAS  Google Scholar 

  159. Kawahara K, Matsuzaki K, Giebisch GH (1990) Stretch-activated ion channels in the apical membrane of A6 cells. J Am Soc Nephvol 1: 686

    Google Scholar 

  160. Kawahara K, Ogawa A, Suzuki M (1990) Regulatory volume decrease in cultured rabbit proximal tubule cells: evidence for activation of Ca-dependent potassium currents. Kidney Int 37: 564

    Google Scholar 

  161. Kemendy A, Eaton DC (1990) Aldosterone-induced sodium transport in A6 epithelia is blocked by 3 deazaadenosine, a methylation blocker. FASEB J 4: A445

    Google Scholar 

  162. Kemendy AE, Eaton DC (1989) Aldosterone affects apical sodium channel density and open probability in A6 epithelia. FASEB J 3: A861

    Google Scholar 

  163. Kim D, Clapham DE (1989) Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science 244: 1174–1176

    Article  PubMed  CAS  Google Scholar 

  164. Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE (1989) G-protein β,γ- subunits activate the cardiac muscarinic K-channel via phospholipase A2. Nature 337:557–560

    Article  PubMed  CAS  Google Scholar 

  165. Kirber MT, Walsh JV Jr, Singer J J (1988) Possible role of ion channels in stretch-induced contraction of smooth muscle. Biophys J 53: 411a

    Google Scholar 

  166. Kirk KL, DiBona DR, Schafer JA (1987) Regulatory volume decrease in perfused proximal nephron: evidence for a dumping of cell K+. Am J Physiol 252: F933–F942

    PubMed  CAS  Google Scholar 

  167. Kishimoto A, Mikawa K, Hashimoto K, Yasuda I, Tanaka S, Tominaga M, Kuroda T, Nishizuka Y (1989) Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). J Biol Chem 264: 4088–4092

    PubMed  CAS  Google Scholar 

  168. Kleyman TR, Cragoe EJ Jr (1988) The mechanism of action of amiloride. Semin Nephrol 8: 242–248

    PubMed  CAS  Google Scholar 

  169. Kleyman TR, Cragoe EJ Jr (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105: 1–21

    Article  PubMed  CAS  Google Scholar 

  170. Kleyman TR, Cragoe EJ Jr, Kraehenbuhl J-P (1989) The cellular pool of Na+ channels in the amphibian cell line A6 is not altered by mineralocorticoids. Analysis using a new photoactive amiloride analog in combination with anti-amiloride antibodies. J Biol Chem 264: 11 995–12000

    Google Scholar 

  171. Knoblauch C, Montrose MH, Murer H (1989) Regulatory volume decrease by cultured renal cells. Am J Physiol 256: C252–C259

    PubMed  CAS  Google Scholar 

  172. Koeppen BM (1987) Electrophysiological identification of principal and intercalatex cells in the rabbit outer medullary collecting duct. Pflugers Arch 409: 138–141

    Article  PubMed  CAS  Google Scholar 

  173. Koeppen BM, Giebisch G, Biagi BA (1983) Electrophysiology of mammalian renal tubules: inferences from intracellular microelectrode studies. Annu Rev Physiol 45: 497–517

    Article  PubMed  CAS  Google Scholar 

  174. Kolb HA, Brown CD, Murer H (1985) Identification of a voltage-dependent anion channel in the apical membrane of a Cl-secretory epithelium (MDCK). Pflugers Arch 403: 262–265

    Article  PubMed  CAS  Google Scholar 

  175. Kolb HA, Brown CD, Murer H (1986) Characterization of a Ca-dependent maxi K channel in the apical membrane of a cultured renal epithelium (JTC-12.P3). J Membr Biol 92: 207–215

    Article  PubMed  CAS  Google Scholar 

  176. Krouse ME, Hagiwara G, Chen J, Lewiston NJ, Wine JJ (1989) Ion channels in normal human and cystic fibrosis sweat gland cells. Am J Physiol 257: C129–C140

    PubMed  CAS  Google Scholar 

  177. Krouse ME, Schneider GT, Gage PW (1986) A large anion-selective channel has seven conductance levels. Nature 319: 58–60

    Article  PubMed  CAS  Google Scholar 

  178. Kukuljan M, Araya N, Caviedes R, Stutzin A (1989) Characterization of a calcium-activated nonselctive cationic channel in a renal cell line. Biophys J 55: 493a–493a

    Google Scholar 

  179. Kunzelmann K, Pavenstadt H, Beck C, Unal O, Emmrich P, Arndt HJ, Greger R (1989) Characterization of potassium channels in respiratory cells. I General properties. Pflugers Arch 414: 291–296

    Article  PubMed  CAS  Google Scholar 

  180. Kunzelmann K, Pavenstadt H, Greger R (1989) Characterization of potassium channels in respiratory cells. II. Inhibitors and regulation. Pflugers Arch 414: 297–303

    Article  PubMed  CAS  Google Scholar 

  181. Lahav M, Dietz T, Edelman IS (1973) The action of aldosterone on sodium transport: further studies with inhibitors of RNA and protein synthesis. Endocrinology 92: 1685–1699

    Article  PubMed  CAS  Google Scholar 

  182. Landry DW, Reitman M, Cragoe EJ Jr, Al Awqati Q (1987) Epithelial chloride channel. Development of inhibitory ligands. J Gen Physiol 90: 779–798

    Article  PubMed  CAS  Google Scholar 

  183. Lang DG, Ritchie AK (1987) Large and small conductance calcium-activated potassium channels in the GH3 anterior pituitary cell line. Pflugers Arch 410: 614–622

    Article  PubMed  CAS  Google Scholar 

  184. Lang F, Defregger M, Paulmichl M (1986) Apparent chloride conductance of subconfluent Madin Darby canine kidney cells. Pflugers Arch 407: 158–162

    Article  PubMed  CAS  Google Scholar 

  185. Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 235: 811–813

    Article  Google Scholar 

  186. Laskowski FH, Christine CW, Gitter AH, Beyenbach KW, Gross P, Fromter E (1990) Cation channels in the apical membrane of collecting duct principal cell epithelium in culture. Renal Physiol Biochem 13: 70–81

    PubMed  CAS  Google Scholar 

  187. Latorre R, Miller C (1983) Conduction and selectivity in potassium channels. J Membr Biol 71: 11–30

    Article  PubMed  CAS  Google Scholar 

  188. Lau KR, Hudson RL, Schultz SG (1984) Cell swelling increases a barium-inhibitable potassium conductance in the basolateral membrane of Necturus small intestine. Proc Natl Acad Sci USA 81: 3591–3594

    Article  PubMed  CAS  Google Scholar 

  189. Lauger P (1978) Transport noise in membranes: current and voltage fluctuations at equilibrium. Biochim Biophys Acta 507: 337–349

    Article  PubMed  CAS  Google Scholar 

  190. Lester DS, Asher C, Garty H (1988) Characterization of cAMP-induced activation of epithelial sodium channels. Am J Physiol 254: C802–C808

    PubMed  CAS  Google Scholar 

  191. Levitan IB (1985) Phosphorylation of ion channels. J Membr Biol 87: 177–190

    Article  PubMed  CAS  Google Scholar 

  192. Levitan IB, De, Peyer JE, Cachelin AB, Reuter H (1982) Ca2+ -activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation. Proc Natl Acad Sci USA 79: 4207–4211

    Article  PubMed  Google Scholar 

  193. Lewis SA (1983) Conttrol of Na+ and water absorption across vertebrate “tight epithelia by adh and aldosterone. J Exp Biol 106: 9–24

    PubMed  CAS  Google Scholar 

  194. Lewis SA, Alles WP (1986) Urinary kallikrein: a physiological regulator of epithelial Na+ absorption. Proc Natl Acad Sci USA 83: 5345–5348

    Article  PubMed  CAS  Google Scholar 

  195. Lewis SA, Butt AG, Bowler MJ, Leader JP, MacKnight ADC (1985) Effects of anions on cellular volume and transepithelial Na transport across toad urinary bladder. J Membr Biol 83: 119–137

    Article  PubMed  CAS  Google Scholar 

  196. Lewis SA, deMoura JLC (1982) Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature 297: 685–688

    Article  PubMed  CAS  Google Scholar 

  197. Lewis SA, Hanrahan JW (1985) Apical and basolateral membrane ionic channels in rabbit urinary bladder epithelium. Pflugers Arch 405: S83–S88

    Article  PubMed  Google Scholar 

  198. Lewis SA, Ifshin MS, Loo DD, Diamond JM (1984) Studies of sodium channels in rabbit urinary bladder by noise analysis. J Membr Biol 80: 135–151

    Article  PubMed  CAS  Google Scholar 

  199. Lewis SA, Wills NK (1982) Electrical properties of the rabbit urinary bladder assessed using gramicidin D. J Membr Biol 67: 45–53

    Article  PubMed  CAS  Google Scholar 

  200. Lewis SA, Wills NK (1983) Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder. J Physiol (Lond) 341: 169–184

    CAS  Google Scholar 

  201. Lewis SA, Wills NK, Eaton DC (1978) Basolateral membrane potential of a tight epithelium: ionic diffusion and electrogenic pumps. J Membr Biol 41: 117–148

    Article  PubMed  CAS  Google Scholar 

  202. Li JH, Cragoe EJ Jr, Lindemann B (1985) Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels. I. Pyrazine-ring modifications. J Membr Biol 83: 45–56

    Article  PubMed  CAS  Google Scholar 

  203. Li JH, Cragoe EJ Jr, Lindemann B (1987) Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels. II. Side-chain modifications. J Membr Biol 95: 171–185

    Article  PubMed  CAS  Google Scholar 

  204. Li JH, Lindemann B (1983) Competitive blocking of epithelial sodium channels by organic cations: the relationship between macroscopic and microscopic inhibition constants. J Membr Biol 76: 235–251

    Article  PubMed  CAS  Google Scholar 

  205. Li JH, Lindemann B (1983) Chemical stimulation of Na transport through amiloride-blockable channels of frog skin epithelium. J Membr Biol 75: 179–192

    Article  PubMed  CAS  Google Scholar 

  206. Li M, McCann JD, Anderson MP, Clancy JP, Liedtke CM, Nairn AC, Greengard P, Welsh MJ (1989) Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia. Science 244: 1353–1356

    Article  PubMed  CAS  Google Scholar 

  207. Li M, McCann JD, Liedtke CM, Nairn AC, Greengard P, Welsh MJ (1988) Cyclic AMP- dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature 331: 358–360

    Article  PubMed  CAS  Google Scholar 

  208. Light D, Ausiello D, Stanton BA (1989) G-protein regulation of a cation channel in renal epithelial cells. Biophys J 55: 604a

    Google Scholar 

  209. Light DB, Ausiello DA, Stanton BA (1989) Guanine nucleotide-binding protein, αi–3 directly activates a cation channel in rat renal inner medullary collecting duct cells. J Clin Invest 84: 352–356

    Article  PubMed  CAS  Google Scholar 

  210. Light DB, Corbin JD, Stanton BA (1990) Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature 344: 336–339

    Article  PubMed  CAS  Google Scholar 

  211. Light DB, McCann FV, Keller TM, Stanton BA (1988) Amiloride-sensitive cation channel in apical membrane of inner medullary collecting duct. Am J Physiol 255: F278–F286

    PubMed  CAS  Google Scholar 

  212. Light DB, Schwiebert EM, Karlson KH, Stanton BA (1989) Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science 243: 383–386

    Article  PubMed  CAS  Google Scholar 

  213. Lindau M, Fernandez JM (1986) A patch-clamp study of histamine-secreting cells. J Gen Physiol 88: 349–368

    Article  PubMed  CAS  Google Scholar 

  214. Lindemann B (1980) The beginning of fluctuation analysis of epithelial ion transport. J Membr Biol 54: 1–11

    Article  PubMed  CAS  Google Scholar 

  215. Lindemann B (1984) Fluctuation analysis of sodium channels in epithelia. Annu Rev Physiol 46: 497–515

    Article  PubMed  CAS  Google Scholar 

  216. Lindemann B, Van Driessche W (1977) Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science 195: 292–294

    Article  PubMed  CAS  Google Scholar 

  217. Ling BN, Eaton DC (1989) Effects of luminal Na+ on single Na+ channels in A6 cells, a regulatory role for protein kinase C. Am J Physiol 256: F1094–F1103

    PubMed  CAS  Google Scholar 

  218. Ling BN, Hinton CF, Eaton DC (1991) Amiloride-sensitive sodium channels in rabbit cortical collecting tubule primary cultures. AM J Physiol 261: F933–F944

    PubMed  CAS  Google Scholar 

  219. Ling BN, Eaton DC (1990) Arachidonic acid modulates apical potassium channels in A6 cells. Clin Res 38: 468A

    Google Scholar 

  220. Ling BN, Kemendy AE, Kokko KE, Hinton CF, Eaton DC (1990) Regulation of the amiloride- blockable sodium channel from epithelial tissue. Mol Cell Biochem 99: 141–150

    Article  PubMed  CAS  Google Scholar 

  221. Lipton SA (1986) Antibody activates cationic channels via second messenger Ca2+. Biochim Biophys Acta 856: 59–67

    Article  PubMed  CAS  Google Scholar 

  222. Loo DD, Kaunitz JD (1989) Ca2+ and cAMP activate K+ channels in the basolateral membrane of crypt cells isolated from rabbit distal colon. J Membr Biol 110: 19–28

    Article  PubMed  CAS  Google Scholar 

  223. Loo DD, Lewis SA, Ifshin MS, Diamond JM (1983) Turnover, membrane insertion, and degradation of sodium channels in rabbit urinary bladder. Science 221: 1288–1290

    Article  PubMed  CAS  Google Scholar 

  224. Loo DDF, Diamond JM (1985) Crystal accumulation and very high short-circuit currents in rabbit urinary bladder. Am J Physiol 248: F70–F77

    PubMed  CAS  Google Scholar 

  225. Loo DDF, Kaunitz JD (1989) Ca2+ and cAMP activate K+ channels in the basolateral membrane of crypt cells isolated from rabbit distal colon. J Membr Biol 110: 19–28

    Article  PubMed  CAS  Google Scholar 

  226. MacGregor RD, Sachs F, Hunt CA (1989) Mechanisms for opening stretch-activated ion channels. Biophys J 55: 245a–245a

    Google Scholar 

  227. Marom S, Dagan D, Winaver J, Palti Y (1989) Brush-border membrane cation conducting channels from rat kidney proximal tubules. Am J Physiol 257: F328–F335

    PubMed  CAS  Google Scholar 

  228. Marty A, Evans MG, Tan YP, Trautman A (1986) Muscarinic responses in rat lacrimal glands. J Exp Biol 124: 15–32

    PubMed  CAS  Google Scholar 

  229. Marty A, Tan YP, Trautman A (1984) Three types of calcium-dependent channels in rat lacrimal glands. J Physiol (Lond) 357: 293–325

    CAS  Google Scholar 

  230. Marunaka Y, Eaton DC (1988) Effects of cdpc on single channel currents of the amiloride- sensitive sodium channel from cultured renal cells. Biophys J 530: 522a

    Google Scholar 

  231. Marunaka Y, Eaton DC (1990) The effects of insulin and phosphatase on a calcium-dependent CI channel in a distal nephron cell line (A6). J Gen Physiol 950: 773–789

    Google Scholar 

  232. Marunaka Y, Eaton DC (1990) Chloride channels in the apical membrane of a distal nephron A6 cell line. Am J Physiol 258: C352–C368

    PubMed  CAS  Google Scholar 

  233. Maruyama Y, Gallacher DV, Petersen OH (1983) Voltage and Ca2+-activated K+ channel in basolateral acinar cell membranes of mammalian salivary glands. Nature 302: 827–829

    Article  PubMed  CAS  Google Scholar 

  234. Maruyama Y, Matsunaga H, Hoshi T (1986) Ca2+ -and voltage activated K+ channel in apical cell membrane of gallbladder epithelium from Triturus. Pflugers Arch 406: 563–567

    Article  PubMed  CAS  Google Scholar 

  235. Maruyama Y, Moore D, Petersen OH (1985) Calcium-activated cation channel in rat thyroid follicular cells. Biochim Biophys Acta 821: 229–232

    Article  PubMed  CAS  Google Scholar 

  236. Maruyama Y, Nishiyama A, Izumi T, Hoshimiya N, Petersen OH (1986) Ensemble noise and current relaxation analysis of K current in single isolated salivary acinar cells from rat. Plfugers Arch 406: 69–72

    Article  CAS  Google Scholar 

  237. Maruyama Y, Nishiyama A, Teshima T (1986) Two types of cation channels in the basolateral cell membrane of human salivary gland acinar cell. Jpn J Physiol 36: 219–223

    Article  PubMed  CAS  Google Scholar 

  238. Maruyama Y, Petersen OH (1982) Cholecystokinin activation of single-channel currents is mediated by internal messenger in pancreatic acinar cells. Nature 300: 61–63

    Article  PubMed  CAS  Google Scholar 

  239. Maruyama Y, Petersen OH (1982) Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature 299: 159–161

    Article  PubMed  CAS  Google Scholar 

  240. Maruyama Y, Petersen OH (1984) Control of K+ conductance by cholecystokinin and Ca2+ in single pancreatic acinar cells studied by the patch-clamp technique. J Membr Biol 79: 293–300

    Article  PubMed  CAS  Google Scholar 

  241. Maruyama Y, Petersen OH (1984) Single calcium-dependent cation channels in mouse pancreatic acinar cells. J Membr Biol 81: 83–87

    Article  PubMed  CAS  Google Scholar 

  242. Maruyama Y, Petersen OH, Flanagan P, Pearson GT (1983) Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells. Nature 305: 228–232

    Article  PubMed  CAS  Google Scholar 

  243. Marver D (1990) PGE2 and PMA inhibit rabbit CCT (Na, K)-ATPase activity by a primary effect on luminal membrane Na permeability. Kidney Int 37: 349

    Google Scholar 

  244. McCarty NA, O’Neil RG (1989) Time-dependent action of calcium for regulatory volume decrease (RVD) in proximal straight tubule (PST): the calcium window. FASEB J 3: A977–A977

    Google Scholar 

  245. Medina IR, Bregestovski PD (1988) Stretch-activated ion channels modulate the resting membrane potential during early embryogenesis. Proc R Soc Lond [Biol] 235: 95–102

    Article  CAS  Google Scholar 

  246. Mene P, Simonson MS, Dunn MJ (1989) Phospholipids in signal transduction of mesangial cells. Am J Physiol 256: F375–F386

    PubMed  CAS  Google Scholar 

  247. Merot J, Bidet M, Gachot B, Le Maout S, Tauc M, Poujeol P (1988) Patch clamp study on primary culture of isolated proximal convuloted tubules. Pflugers Arch 413: 51–61

    Article  PubMed  CAS  Google Scholar 

  248. Methfessel C, Witzemann V, Takahashi T, Mishina M, Numa S, Sakmann B (1986) Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch 407: 577–588

    Article  PubMed  CAS  Google Scholar 

  249. Miledi R (1982) A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc R Soc Lond [Biol] 215: 491–497

    Article  CAS  Google Scholar 

  250. Miledi R, Parker I (1984) Chloride current induced by injection of calcium into Xenopus oocytes. J Physiol (Lond) 357: 173–183

    CAS  Google Scholar 

  251. Miledi R, Parker I (1989) Latencies of membrane currents evoked in Xenopus oocytes by receptor activation, inositol trisphosphate and calcium. J Physiol (Lond) 415: 189–210

    CAS  Google Scholar 

  252. Miller C, Latorre R, Reisin I (1987) Coupling of voltage-dependent gating and Ba block in the high-conductance, Ca-activated K channel. J Gen Physiol 90: 427–449

    Google Scholar 

  253. Miller C, Moczydlowskki E, Latorre R, Phillips M (1985) Charybdotoxin, a protein inhibitor of single Ca-activated K channels from mammalian skeletal muscle. Nature 313: 316–318

    Article  PubMed  CAS  Google Scholar 

  254. Miller RJ (1987) Multiple calcium channels and neuronal function. Science 235: 46–52

    Article  PubMed  CAS  Google Scholar 

  255. Miller RT, Moe O, Tejedor A, Pang I-J, Stermweis PC (1990) Distribution of G proteins and adenylyl cyclase in renal cortical brush border and basolateral membranes. Kidney Int 37: 215–215

    Google Scholar 

  256. Mircheff AK, Lu CC (1984) A map of membrane populations isolated from rat exorbital gland. Am J Physiol 247: G651–G661

    PubMed  CAS  Google Scholar 

  257. Moczydlowski E, Latorre R (1983) Gating kinetics of Ca-activated K channels from rat muscle incorporated into planar lipid bilayers. J Gen Physiol 82: 511–542

    Article  PubMed  CAS  Google Scholar 

  258. Mohrmann M, Cantiello HF, Ausiello DA (1987) Inhibition of epithelial Na+ transport by atriopeptin, protein kinase C, and pertussis toxin. Am J Physiol 253: F372–F376

    PubMed  CAS  Google Scholar 

  259. Molony DA, Andreoli TE (1988) Diluting power of thick limbs of Henle I. Peritubular hypertonicity blocks basolateral Cl- channels. Am J Physiol 255: F1128–F1137

    PubMed  CAS  Google Scholar 

  260. Montero MC, Bolufer J, Ilundain A (1988) Potassium transport in epithelial cells isolated from small intestine of the chicken. Pflugers Arch 412: 422–426

    Article  PubMed  CAS  Google Scholar 

  261. Montrose-Rafizedah C, Taniguchi J, Guggino WB (1990) Activation of apical calcium- activated potassium channels in volume regulation in the thick ascending limb. Kidney Int 37: 567

    Google Scholar 

  262. Morris AP, Fuller CM, Gallacher DV (1987) Cholinergic receptors regulate a voltage- insensitive but Na+-dependent calcium influx pathway in salivary acinar cells. FEBS Lett 211: 195–199

    Article  PubMed  CAS  Google Scholar 

  263. Morris AP, Gallacher DV, Lee JA (1986) A large conductance, voltage- and calcium-activated K+ channel in the basolateral membrane of rat enterocytes. FEBS Lett 206: 87–92

    Article  PubMed  CAS  Google Scholar 

  264. Muto S, Giebisch G, Sansom S (1987) Effects of adrenalectomy on CCD: evidence for differential response of two cell types. Am J Physiol 253: F742–F762

    PubMed  CAS  Google Scholar 

  265. Neer EJ, Kim S-Y, Ang S-L, Bloch DB, Bloch KD, Kawahara Y, Tolman C, Lee R, Logothetis D, Kim D, Seidman JG, Clapham DE (1988) Functions of G-protein subunits. Cold Spring Harbor Symp Quant Biol 53: 241–246

    PubMed  CAS  Google Scholar 

  266. Neher E, Colquhoun D, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294: 752–754

    Article  PubMed  Google Scholar 

  267. Neher E, Stevens CF (1977) Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng 6: 345–381

    Article  PubMed  CAS  Google Scholar 

  268. Nelson DJ, Tang JM, Palmer LG (1984) Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells. J Membr Biol 80: 81–89

    Article  PubMed  CAS  Google Scholar 

  269. Neufeld T, Terreros D, Grantham J (1983) Critical role of calcium in the regulation of intracellular volume of isolated proximal S2 renal tubules in hypotonic medium. Kidney Int 23: 255

    Google Scholar 

  270. Novak I, Greger R (1988) Properties of the luminal membrane of isolated perfumed rat pancreatic ducts. Effects of cyclic AMP and blockers of chloride transport. Pflugers Arch 411: 546–553

    Article  PubMed  CAS  Google Scholar 

  271. O’Neil RG, Hayhurst RA (1985) Functional differentiation of cell types of cortical collecting duct. Am J Physiol 248: F449–F453

    PubMed  Google Scholar 

  272. O’Neil RG, Sansom SC (1984) Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J Membr Biol 82: 281–295

    Article  PubMed  Google Scholar 

  273. O’Neil RG, Sansom SC (1984) Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J Membr Biol 82: 281–295

    Article  PubMed  Google Scholar 

  274. O’Neil RG, Sansom SC (1984) Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques. Am J Physiol 247: F14–F24

    PubMed  Google Scholar 

  275. O’Neil RG, Sansom SC (1984) Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques. Am J Physiol 247: F14–F24

    PubMed  Google Scholar 

  276. Oberleithner H, Kersting U, Gassner B (1988) Aldosterone-controlled linkage between Na+/H+ exchange and K+ channels in fused renal epithelial cells. Ciba Found Symp 139: 201–219

    PubMed  CAS  Google Scholar 

  277. Oberleithner H, Kersting U, Hunter M (1988) Cytoplasmic pH determines K+ conductance in fused renal epithelial cells. Proc Natl Acad Sci USA 85: 8345–8349

    Article  PubMed  CAS  Google Scholar 

  278. Oberleithner H, Weigt M, Westphale H-J, Wang W (1987) Aldosterone activates Na/H exchange and raises cytoplasmic pH in target cells of the amphibian kidney. Proc Natl Acad Sci USA 84: 1464–1468

    Article  PubMed  CAS  Google Scholar 

  279. Olans L, Sariban-Sohraby S, Benos DJ (1984) Saturation behavior of single, amiloride- sensitive Na+ channels in planar lipid bilayers. Biophys J 46: 831–835

    Article  PubMed  CAS  Google Scholar 

  280. Pallotta BS (1985) N-Bromoacetamide removes a calcium-dependent component of channel opening from calcium-activated potassium channels in rat skeletal muscle. J Gen Physiol 86: 601–611

    Article  PubMed  CAS  Google Scholar 

  281. Palmer LG, Corthesy-Theulaz I, Gaeggeler H-P, Kraehenbuhl J-P, Rossier BC (1990) Expression of epithelial sodium channels in oocytes. J Gen Physiol 96: 23–46

    Article  PubMed  CAS  Google Scholar 

  282. Palmer LG, Frindt G (1986) Epithelial sodium channels: characterization by using the patch- clamp technique. Fed Proc 45: 2708–2712

    PubMed  CAS  Google Scholar 

  283. Palmer LG, Frindt G (1986) Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci USA 83: 2767–2770

    Article  PubMed  CAS  Google Scholar 

  284. Palmer LG, Frindt G (1987) Ca ionophore and phorbol ester inhibit Na channels in rat cortical tubules. Fed Proc 46: 495

    Google Scholar 

  285. Palmer LG, Frindt G (1987) Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am J Physiol 253: F333–F339

    PubMed  CAS  Google Scholar 

  286. Palmer LG, Li JH, Lindemann B, Edelman IS (1982) Aldosterone control of the density of sodium channels in the toad urinary bladder. J Membr Biol 64: 91–102

    Article  PubMed  CAS  Google Scholar 

  287. Parent L, Cardinal J, Sauve R (1988) Single-channel analysis of a K channel at basolateral membrane of rabbit proximal convoluted tubule. Am J Physiol 254: F105–111

    PubMed  CAS  Google Scholar 

  288. Parent L, Dube L, Roy G, Sauve R (1989) Patch-clamp studies of K+ and Cl- channels at the apical membrane of kidney proximal tubule cells in primary culture. Biophys J 55: 161a

    Google Scholar 

  289. Partidge LD, Swandulla D (1988) Calcium-activated non-specific cation channels. TINS 11: 69–72

    Google Scholar 

  290. Patlak J, Horn R (1983) Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches. J Gen Physiol 79: 333–351

    Article  Google Scholar 

  291. Petersen OH, Findlay I, Iwatsuki N, Singh J, Gallacher DV, Fuller CM, Pearson GT, Dunne MJ, Morris AP (1985) Human pancreatic acinar cells: studies of stimulus-secretion coupling. Gastroenterology 89: 109–117

    PubMed  CAS  Google Scholar 

  292. Post MA, Richards NM, Ernst SA, Dawson DC (1989) Apical stretch-activated cation channels in a toad urinary bladder cell line (TMB). FASEB J 3: A861

    Google Scholar 

  293. Rae JL (1985) The application of patch clamp methods to ocular epithelia. Curr Eye Res 4: 409–420

    Article  PubMed  CAS  Google Scholar 

  294. Rae JL (1986) Potassium channels from chick lens epithelium. Fed Proc 45: 2718–2722

    PubMed  CAS  Google Scholar 

  295. Rae JL, Dewey J, Cooper K (1986) Properties of single potassium-selective ionic channels from the apical membrane of rabbit corneal endothelium. Exp Eye Res 49: 591–610

    Article  Google Scholar 

  296. Rae JL, Levis RA (1984) Patch clamp recordings from the epithelium of the lens obtained using glasses selected for low noise and improved sealing properties. Biophys J 45: 144–146

    Article  PubMed  CAS  Google Scholar 

  297. Rae JL, Levis RA (1984) Patch voltage clamp of lens epithelial cells: theory and practice. Mol Physiol 6: 115–162

    CAS  Google Scholar 

  298. Rae JL, Levis RA, Eisenberg RS (1988) Ionic channels in ocular epithelia. In: Narahashi T (ed) Ion channels, Plenum, New York, pp 283–327

    Google Scholar 

  299. Reif MC, Troutman SL, Schafer JA (1986) Sodium transport by rat cortical collecting tubule. Effects of vasopressin and desoxycorticosterone. J Clin Invest 77: 1291–1298

    Article  PubMed  CAS  Google Scholar 

  300. Reinhardt R, Bridges RJ, Rummel W, Lindemann B (1987) Properties of an anion-selective channel from rat colonic enterocyte plasma membranes reconstituted into planar phospholipid bilayers. J Membr Biol 95: 47–54

    Article  PubMed  CAS  Google Scholar 

  301. Richards NW, Dawson DC (1986) Single potassium channels blocked by lidocaine and quinidine in isolated turtle colon epithelial cells. Am J Physiol 251: C85–C89

    PubMed  CAS  Google Scholar 

  302. Richards NW, Dawson DC (1987) Two types of Ca-activated channels in isolated turtle colon epithelial cells. Biophys J 51: 344a

    Google Scholar 

  303. Richards NW, Dawson DC (1989) N-phenylanthranilic acid blocks specific classes of K- conducting channels in colonic epithelial cells. FASEB J 3: A1149

    Google Scholar 

  304. Richards NW, Lowy RJ, Ernst SA, Dawson DC (1989) Two K+ channel types, muscarinic agonist-activated and inwardly rectifying, in a Cl- secretory epithelium: the avian salt gland. J Gen Physiol 93: 1171–1194

    Article  PubMed  CAS  Google Scholar 

  305. Ritchie A (1987) Thyrotropin-releasing hormone stimulates a calcium-activated potassium current in a rat anterior pituitary cell line. J Physiol (London) 385: 611–625

    CAS  Google Scholar 

  306. Ritchie A (1987) Two distinct calcium-activated potassium currents in a rat anterior pituitary cell line. J Physiol (London) 385: 591–609

    CAS  Google Scholar 

  307. Rossier BC, Gaeggeler H-P, Rossier M (1978) Effects of 3′deoxyadenosine and actinomycin D on RNA synthesis in toad bladder: analysis of response to aldosterone. J Membr Biol 41: 149–166

    Article  PubMed  CAS  Google Scholar 

  308. Rossiter KA, Liang CT, Kinsella JL, Austin HA, Spiegel AM (1990) Polar distribution and heterogenous localization of G-s-alpha and other G-proteins in a mammalian kidney. Kidney Int 37: 216

    Google Scholar 

  309. Rousseau G, Crabbe J (1972) Effects of aldosterone on RNA and protein synthesis in the toad bladder. Eur J Biochem 25: 550–559

    Article  PubMed  CAS  Google Scholar 

  310. Sachs F (1987) Baroreceptor mechanisms at the cellular level. Fed Proc 46: 12–16

    PubMed  CAS  Google Scholar 

  311. Sackin H (1987) Stretch-activated potassium channels in renal proximal tubule. Am J Physiol 253: F1253–F1262

    PubMed  CAS  Google Scholar 

  312. Sackin H (1989) A stretch-activated K+ channel sensitive to cell volume. Proc Natl Acad Sci USA 86: 1731–1735

    Article  PubMed  CAS  Google Scholar 

  313. Sackin H, Palmer LG (1987) Basolateral potassium channels in renal proximal tubule. Am J Physiol 253: F476–F487

    PubMed  CAS  Google Scholar 

  314. Sadoshima J, Akaike N, Kanaide H, Nakamura M (1988) Cyclic AMP modulates Ca-activated K channel in cultured smooth muscle cells of rat aortas. Am J Physiol 255: H754–H759

    PubMed  CAS  Google Scholar 

  315. Sakmann B, Trube G (1984) Voltage-dependent inactivation of inward-rectifying single- channel currents in the guinea-pig heart cell membrane. J Physiol (Lond) 347: 659–683

    CAS  Google Scholar 

  316. Sakmann B, Trube G (1984) Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol (Lond) 347: 641–657

    CAS  Google Scholar 

  317. Salkoff LB, Tanouye MA (1986) Genetics of ion channels. Physiol Rev 66: 301–329

    PubMed  CAS  Google Scholar 

  318. Sansom SC, O’Neil RG (1985) Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am J Physiol 248: F858–F868

    PubMed  CAS  Google Scholar 

  319. Sariban-Sohraby S, Benos DJ (1986) The amiloride-sensitive sodium channel. Am J Physiol 250: C175–C190

    PubMed  CAS  Google Scholar 

  320. Sariban-Sohraby S, Latorre R, Burg M, Olans L, Benos D (1984) Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes. Nature 308: 80–82

    Article  PubMed  CAS  Google Scholar 

  321. Schafer JA, Troutman SL, Schlatter E (1990) Vasopressin and mineralocorticoid increase apical membrane driving force for K+ secretion in rat CCD. Am J Physiol 258: F199–F210

    PubMed  CAS  Google Scholar 

  322. Schild L, Aronson PS, Giebisch G (1989) Changes in cell volume induced by K and CI in the isolated and prefused rabbit proximal tubule. Kidney Int 35: 488

    Google Scholar 

  323. Schlatter E, Greger R (1985) cAMP increases the basolateral Cl--conductance in the isolated perfused medullary thick ascending limb of Henle’s loop of the mouse. Pflugers Arch 405: 367–376

    Article  PubMed  CAS  Google Scholar 

  324. Schlatter E, Schafer JA (1987) Electrophysiological studies in principal cells of rat cortical collecting tubules. ADH increases the apical membrane Na +-conductance. Pflugers Arch 409: 81–92

    Article  PubMed  CAS  Google Scholar 

  325. Schneider GT, Cook DL, Gage PW, Young JA (1985) Voltage sensitive, high-conductance chloride channels in the luminal membrane of cultured pulmonary alveolar (type II) cells. Pflugers Arch 404: 354–357

    Article  PubMed  CAS  Google Scholar 

  326. Schoumacher RA, Shoemaker RL, Halm DR, Tallant EA, Wallace RA, Frizzell RA (1987) Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature 330: 752–754

    Article  PubMed  CAS  Google Scholar 

  327. Schultz SG (1981) Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through”. Am J Physiol 241: F579–F590

    PubMed  CAS  Google Scholar 

  328. Schultz SG, Hudson RL (1986) How do sodium-absorbing cells do their job and survive. News Physiol Sci 1: 185–189

    CAS  Google Scholar 

  329. Schuster VL (1986) Cyclic adenosine monophosphate-stimulated anion transport in rabbit cortical collecting duct. J Clin Invest 78: 1621–1630

    Article  PubMed  CAS  Google Scholar 

  330. Schuster VL, Stokes JB (1987) Chloride transport by the cortical and outer medullary collecting duct. Am J Physiol 253: F203–F212

    PubMed  CAS  Google Scholar 

  331. Sepulveda FV, Mason WT (1985) Single channel recordings obtained from basolateral membranes of isolated rabbit enterocytes. FEBS Lett 191: 87–91

    Article  PubMed  CAS  Google Scholar 

  332. Shearman MS, Sekiguchi K, Nishizuka Y (1989) Modulation of ion channel activity: a key function of the protein kinase C enzyme family. Pharmacol Rev 41: 211–237

    PubMed  CAS  Google Scholar 

  333. Sheppard DN, Giraldez F, Sepulveda FV (1988) K+ channels activated by L-alanine transport in isolated Necturus enterocytes. FEBS Lett 234: 446–448

    Article  PubMed  CAS  Google Scholar 

  334. Shoemaker RL, Frizzell RA, Dwyer TM, Farley JM (1986) Single chloride channel currents from canine tracheal epithelial cells. Biochim Biophys Acta 858: 235–242

    Article  PubMed  CAS  Google Scholar 

  335. Sieman D, Reuhl T (1987) Non-selective cationic channel in primary cultured cells of brown adipose tissue. Pflugers Arch 408: 534–536

    Article  Google Scholar 

  336. Sigurdson WJ, Morris CE, Brezden BL, Gardner DR (1987) Stretch activation of a K+ channel in molluscan heart cells. J Exp Biol 127: 191–209

    Google Scholar 

  337. Silva P, Stoff J, Field M, Fine L, Forrest JN, Epstein FH (1977) Mechanism of active chloride secretion by shark rectal gland: role of Na/K-ATPase in chloride transport. Am J Physiol 233: F298–F306

    PubMed  CAS  Google Scholar 

  338. Simmonneau M, Distasi C, Tauc L, Barbin G (1987) Potassium channels in mouse neonatal root gangelion cells: a patch-clamp study. Brain Res 412: 224–232

    Article  Google Scholar 

  339. Snider RM, Roland RM, Lowy RJ, Agranoff BW, Ernst SA (1986) Muscarinic receptor- stimulated Ca2+ signaling and inositol lipid metabolism in avian salt gland cells. Biochim Biophys Acta 889: 216–224

    Article  PubMed  CAS  Google Scholar 

  340. Stanton BA, Dietl S, Schwiebert E (1991) Cell volume regulation in the cortical collecting duct (CCD): stretch-activated CI channels. Kidney Int

    Google Scholar 

  341. Stetson DL, Lewis SA, Alles W, Wade JB (1982) Evaluation by capacitance measurements of antidiuretic hormone induced membrane area changes in toad bladder. Biochim Biophys Acta 689: 267–274

    Article  PubMed  CAS  Google Scholar 

  342. Stokes JB (1982) Ion transport by the cortical and outer medullary collecting tubule. Kidney Int 22: 473–484

    Article  PubMed  CAS  Google Scholar 

  343. Strange K, Willingham MC, Handler JS, Harris HW Jr (1988) Apical membrane endocytosis via coated pits is stimulated by removal of antidiuretic hormone from isolated, perfused rabbit cortical collecting tubule. J Membr Biol 103: 17–28

    Article  PubMed  CAS  Google Scholar 

  344. Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1, 4, 5,-triphosphate. Nature 306: 67–69

    CAS  Google Scholar 

  345. Strieter J, Stephenson JL, Palmer LG, Weinstein AM (1989) Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of toad bladder epithelium. FASEB J 3: A1150

    Google Scholar 

  346. Sturgess NC, Hales CN, Ashford MLJ (1986) Inhibition of a calcium-activated, non-selective cation channel, in a rat insulinoma cell line, by adenine derivates. FEBS Lett 208: 397–400

    Article  PubMed  CAS  Google Scholar 

  347. Sugimoto T, Tanabe Y, Shigemoto R, Iwai M, Takumi T, Ohkubo H, Nakanishi S (1990) Immunohistochemical study of a rat membrane protein which induces a selective potassium permeation: its localization in the apical membrane portion of epithelial cells. J Membr Biol 113: 39–47

    Article  PubMed  CAS  Google Scholar 

  348. Suzuki K, Petersen CC, Petersen OH (1985) Hormonal activation of single K+ channels via internal messenger in isolated pancreatic acinar cells. FEBS Lett 192: 307–312

    Article  PubMed  CAS  Google Scholar 

  349. Suzuki K, Petersen OH (1988) Patch-clamp study of single-channel and whole-cell K+ currents in guinea pig pancreatic acinar cells. Am J Physiol 255: G275–G285

    PubMed  CAS  Google Scholar 

  350. Tang C-M, Presser F, Morad M (1988) Amiloride selectivity blocks the low threshold (T) calcium channel. Science 240: 213–214

    Google Scholar 

  351. Taniguchi J, Guggino WB (1989) Membrane stretch: a physiological stimulator of Ca2+-activated K+ channels in thick ascending limb. Am J Physiol 257: F347–F352

    PubMed  CAS  Google Scholar 

  352. Tanner GA, Horisberger JD, Giebisch G (1988) Cell volume regulation in late proximal tubule of necturus kidney. Kidney Int 35: 428–428

    Google Scholar 

  353. Taylor A (1979) Possible role of crytosolic calcium amp; Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol 236: F505–F512

    PubMed  CAS  Google Scholar 

  354. Taylor A, Lee CO, Windhager EE (1980) Cytosolic calcium ion activity in epithelial cells of Necturus kidney. Nature 287: 859–861

    Article  PubMed  Google Scholar 

  355. Tempel BL, Jan YN, Jan LY (1988) Cloning of a probable potassium channel gene from mouse brain. Nature 332: 837–839

    Article  PubMed  CAS  Google Scholar 

  356. Tempel BL, Papazian DM, Schwarz TL, Jan YN, Lily YJ (1987) Sequence of a probable potassium channel component encoded at Shaker locus of Drosophilia. Science 237: 770–775

    Article  PubMed  CAS  Google Scholar 

  357. Teulon J, Paulais M, Anagnostopoules T (1988) ATP-, ADP- and AMP-inhibition of a Ca2+-activated non-selective cation channel from the basolateral membrane of the cortical thick ascending limb of Henle’s loop (CAL). Kidney Int 35: 428–428

    Google Scholar 

  358. Teulon J, Paulais M, Bouthier M (1987) A Ca2+-activated cation-selective channel in the basolateral membrane of the cortical thick ascending limb of Henle’s loop of the mouse. Biochim Biophys Acta 905: 125–132

    Article  PubMed  CAS  Google Scholar 

  359. Ubl J, Murer H, Kolb H-A (1988) Hypotonic shock evokes opening of Ca2+-activated K channels in opossum kidney cells. Pflugers Arch 412: 551–553

    Article  PubMed  CAS  Google Scholar 

  360. Ubl J, Murer H, Kolb H-A (1988) Ion channels activated by osmotic and mechanical stress in membranes of opossum kidney cells. J Membr Biol 104: 223–232

    Article  PubMed  CAS  Google Scholar 

  361. Ueda S, Loo DD, Sachs G (1987) Regulation of K+ channels in the basolateral membrane of Necturus oxyntic cells. J Membr Biol 97: 31–41

    Article  PubMed  CAS  Google Scholar 

  362. Ussing HH, Koefoed-Johnsen V (1958) The nature of the frog skin potential. Acta Physiol Scand 42: 298–308

    Article  PubMed  Google Scholar 

  363. Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in short-circuited isolated frog skin. Acta Physiol Scand 23: 110–127

    Article  PubMed  CAS  Google Scholar 

  364. Valdivia HH, Dubinsky WP, Coronado R (1988) Reconstitution and phosphorylation of chloride channels from airway epithelium membranes. Science 242: 1441–1444

    Article  PubMed  CAS  Google Scholar 

  365. Van de Stolpe A, Jamison RL (1988) Micropuncture study of the effect of ANP on the papillary collecting duct in the rat. Am J Physiol 254: F477–F483

    PubMed  Google Scholar 

  366. van der Ploeg I, Celsi G, Bertorello A, Holtback U, Fredholm B, Aperia A (1990) G-protein subunits distribution in the luminal and basolateral membrane of proximal tubular cell. Kidney Int 37: 217

    Google Scholar 

  367. Van Driessche W (1980) Spontaneous and blocker-induced K-channel noise in frog skin (Rana temporaria). Biophys Struct Mech 6: 5–8

    Article  Google Scholar 

  368. Van Driessche W (1980) Ba-induced conductance fluctuations of spontaneously fluctuating K channels in the apical membrane of frog skin (Rana temporaria). J Membr Biol 56: 31–42

    Article  PubMed  Google Scholar 

  369. Van Driessche W (1984) Physiological role of apical potassium ion channels in frog skin. J Physiol (Lond) 356: 79–95

    Google Scholar 

  370. Van Driessche W (1987) Ca2+ channels in the apical membrane of the toad urinary bladder. Pflugers Arch 410: 243–249

    Article  PubMed  Google Scholar 

  371. Van Driessche W, Aelvoet I, Erlij D (1987) Oxytocin and cAMP stimulate monovalent cation movements through a Ca-sensitive, amiloride-insensitive channel in apical membrane of toad urinary bladder. Proc Natl Acad Sci USA 84: 313–317

    Article  PubMed  Google Scholar 

  372. Van Driessche W, Desmedt L, Simaels J (1989) Forskolin and serosal hypotonicity activate a calcium-sensitive pathway in the apical membrane of frog skin. FASEB J 3: A983–A983

    Google Scholar 

  373. Van Driessche W, Erlij D (1983) Noise analysis of inward and outward Na+ currents across the apical border of ouabain-treated frog skin. Pflugers Arch 398: 179–188

    Article  PubMed  Google Scholar 

  374. Van Driessche W, Gogelein H (1978) Potassium channels in the apical membrane of the toad gallbladder. Nature 275: 665–667

    Article  PubMed  Google Scholar 

  375. Van Driessche W, Hillyard SD (1985) Quinidine blockage of K channels in the basolateral membrane of larval bullfrog skin. Pflugers Arch 405: S77–S82

    Article  PubMed  Google Scholar 

  376. Van Driessche W, Wills NK, Hillyard SD, Zeiske W (1982) K+ channels in an epithelial “single membrane” preparation. Arch Int Physiol Biochim 90: P12–P14

    Google Scholar 

  377. Van Driessche W, Zeiske W (1980) Spontaneous fluctuations of potassium channels in the apical membrane of frog skin. J Physiol (Lond) 299: 101–116

    Google Scholar 

  378. Van Driessche W, Zeiske W (1985) Apical K+ channels in frog skin: a pathway for K+ excretion. In: Gilles R, Gilles-Baillien M (eds) Transport processes, iono- and osmoregulation. Springer, Berlin Heidelberg New York, pp 40–55

    Google Scholar 

  379. Van Driessche W, Zeiske W (1985) Ionic channels in epithelial cell membranes. Physiol Rev 65: 833–903

    PubMed  Google Scholar 

  380. Van Driessche W, Zeiske W (1985) Apical K+ channels in frog skin: a pathway for K+ excretion. In: Gilles R, Gilles-Baillien M (eds) Transport processes, iono- and osmoregulation. Springer, Berlin Heidelberg New York, pp 40–55

    Google Scholar 

  381. Van Driessche W, Zeiske W (1985) Ca2+ -sensitive, spontaneously fluctuating, cation channels in the apical membrane of the adult frog skin epithelium. Pflugers Arch 405: 250–259

    Article  PubMed  Google Scholar 

  382. Vergara C, Latorre R (1983) Kinetics of Ca2+ -activated K+ channels from rabbit muscle incorporated into planar bilayers. J Gen Physiol 82: 543–568

    Article  PubMed  CAS  Google Scholar 

  383. von Tscharner V, Prod’hom B, Baggiolini M, Reuter H (1986) Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324: 369–372

    Article  Google Scholar 

  384. Wade JB (1986) Role of membrane fusion in hormonal regulation of epithelial transport. Annu Rev Physiol 48: 213–223

    Article  PubMed  CAS  Google Scholar 

  385. Wade JB (1989) Dynamics of apical membrane responses to ADH in amphibian bladder. Am J Physiol 257: R998–R1003

    PubMed  CAS  Google Scholar 

  386. Wang WH, White S, Geibel J, Giebisch G (1990) A potassium channel in the apical membrane of rabbit thick ascending limb of Henle’s loop. Am J Physiol 258: F244–F253

    PubMed  CAS  Google Scholar 

  387. Welling PA, O’Neil RG (1987) Cell swelling increases basolateral membrane Cl and K conductances of the rabbit proximal straight tubule (PST). Kidney Int 31: 452–452

    Google Scholar 

  388. Welsh MJ (1983) Evidence for basolateral membrane potassium conductance in canine tracheal epithelium. Am J Physiol 244: C377–C384

    PubMed  CAS  Google Scholar 

  389. Welsh MJ (1984) Anthracene-9-carboxylic acid inhibits an apical membrane chloride conductance in canine tracheal epithelium. J Membr Biol 78: 61–71

    Article  PubMed  CAS  Google Scholar 

  390. Welsh MJ (1985) Ion transport by primary cultures of canine tracheal epithelium: methodology, morphology, and electrophysiology. J Membr Biol 88: 149–163

    Article  PubMed  CAS  Google Scholar 

  391. Welsh MJ (1986) Single apical membrane anion channels in primary cultures of canine tracheal epithelium. Pflugers Arch 407: S116–S122

    Article  PubMed  CAS  Google Scholar 

  392. Welsh MJ (1986) An apical-membrane chloride channel in human tracheal epithelium. Science 232: 1648–1650

    Article  PubMed  CAS  Google Scholar 

  393. Welsh MJ (1988) Defective regulation of ion transport in CF airway epithelia. In: Mastella G, Quinton PM (eds) Cellular and molecular basis of cystic fibrosis. San Francisco Press, San Francisco, pp 321–332

    Google Scholar 

  394. Welsh MJ, Liedtke CM (1986) Chloride and potassium channels in cystic fibrosis airway epithelia. Nature 322: 467–470

    Article  PubMed  CAS  Google Scholar 

  395. Welsh MJ, McCann JD (1985) Intracellular clacium regulates basolateral potassium channels in a chloride-secreting epithelium. Proc Natl Acad Sci USA 82: 8823–8826

    Article  PubMed  CAS  Google Scholar 

  396. Welsh MJ, Smith PL, Frizzell RA (1982) Chloride secretion by canine tracheal epithelium. II. The cellular electrical potential profile. J Membr Biol 70: 227–238

    Article  PubMed  CAS  Google Scholar 

  397. Welsh MJ, Smith PL, Frizzell RA (1983) Chloride secretion by canine tracheal epithelium. III. Membrane resistances and electromotive forces. J Membr Biol 71: 209–218

    Article  PubMed  CAS  Google Scholar 

  398. White SJ, Henderson RM, Boulpaep EL, Giebisch GH (1989) Ion channels in cultured rabbit renal collecting duct cells. Kidney Int 35: 491–491

    Google Scholar 

  399. Wills NK (1984) Mechanisms of ion transport by the mammalian colon revealed by frequency domain analysis techniques. In: Wade JB, Lewis SA (eds) Current topics in membranes and transport. Academic, New York, pp 61–85

    Google Scholar 

  400. Wills NK (1985) Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium. J Physiol (Lond) 358: 433–445

    CAS  Google Scholar 

  401. Wills NK, Alles WP, Sandle GI, Binder HJ (1984) Apical membrane properties and amiloride binding kinetics of the human descending colon. Am J Physiol 247: G749–G757

    PubMed  CAS  Google Scholar 

  402. Wills NK, Biagi BA (1982) Active potassium transport by rabbit descending colon epithelium. J Membr Biol 64: 195–203

    Article  PubMed  CAS  Google Scholar 

  403. Wills NK, Clausen C, Clauss WC (1987) Electrophysiology of active potassium transport across the mammalian colon. In: Giebisch G (ed) Current topics in membranes and transport. Academic, New York, pp 441–456

    Google Scholar 

  404. Wills NK, Eaton DC, Lewis SA, Ifshin MS (1979) Current-voltage relationship of the basolateral membrane of a tight epithelium. Biochim Biophys Acta 555: 519–523

    Article  PubMed  CAS  Google Scholar 

  405. Wills NK, Lewis SA, Eaton DC (1979) Active and passive properties of rabbit descending colon: a microelectrode and nystatin study. J Membr Biol 45: 81–108

    Article  PubMed  CAS  Google Scholar 

  406. Wills NK, Zeiske W, Van Driessche W (1982) Noise analysis reveals K+ channel conductance fluctuations in the apical membrane of rabbit colon. J Membr Biol 69: 187–197

    Article  PubMed  CAS  Google Scholar 

  407. Wills NK, Zweifach A (1987) Recent advances in the characterization of epithelial ionic channels. Biochim Biophys Acta 906: 1–31

    PubMed  CAS  Google Scholar 

  408. Wolf ID, Van Driessche W (1986) Voltage-dependent Ba block of K channels in apical membrane of frog skin. Am J Physiol 251: C696–C706

    PubMed  Google Scholar 

  409. Wong SME, Chase HS Jr (1986) Role of intracellular calcium in cellular volume regulation. Am J Physiol 250.-C841–C852

    PubMed  CAS  Google Scholar 

  410. Worrell RT, Butt AG, Cliff WH, Frizzell RA (1989) A volume-sensitive chloride conductance in human colonic cell line T84. Am J Physiol 256: C1111–C1119

    PubMed  CAS  Google Scholar 

  411. Worrell RT, Frizzell RA (1989) DIDS inhibits a volume-sensitive epithelial chloride conductance in the colonic cell line. FASEB J 3: A1148–A1148

    Google Scholar 

  412. Yanase M, Handler JS (1986) Adenosine 3′, 5′-cyclic monophosphate stimulates chloride secretion in A6 epithelia. Am J Physiol 251: C810–C814

    PubMed  CAS  Google Scholar 

  413. Yanase M, Handler JS (1986) Activators of protein kinase C inhibit sodium transport in A6 epithelia. Am J Physiol 250: C517 - C522

    PubMed  CAS  Google Scholar 

  414. Yang XC, Sachs F (1987) Stretch-activated channels in several tissues. Biophys J 51: 252a

    Google Scholar 

  415. Yatani A, Codina J, Brown AM, Birnbaumer L (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein G-K. Science 235: 207–211

    Article  PubMed  CAS  Google Scholar 

  416. Yellen G (1982) Single Ca2+ -activated nonselective cation channels in neuroblastoma. Nature 296: 357–359

    Article  PubMed  CAS  Google Scholar 

  417. Zeidel ML, Kikeri D, Burrows M, Silva P, Brenner BM (1988) Atrial natriuretic peptide (ANP) inhibits 22Na uptake in rabbit inner medullary collecting duct (IMCD) cells. Kidney Int 33: 291–291

    Google Scholar 

  418. Zeiske W, Machen TE, Van Driessche W (1983) Cl--and K+ -related fluctuations of ionic current through oxyntic cells in frog gastric mucosa. Am J Physiol 245: 797–807

    Google Scholar 

  419. Zeiske W, Van Driessche W (1979) Saturable K+ pathway across the outer border of frog skin: kinetics and inhibition by Cs+ and other cations. J Membr Biol 47: 77–96

    Article  PubMed  CAS  Google Scholar 

  420. Zeiske W, Van Driessche W (1981) Cationic permeability of an epithelial K+ channel. Arch Int Physiol Biochim 89: 55–59

    Google Scholar 

  421. Zeiske W, Van Driessche W (1981) Apical K+ channels in frog skin (Rana temporaria): cation adsorption and voltage influence gating kinetics. Pflugers Arch 390: 22–29

    Article  PubMed  CAS  Google Scholar 

  422. Zeiske W, Van Driessche W (1984) The sensitivity of apical Na+ permeability in frog skin to hypertonic stress. Pflugers Arch 400: 130–139

    Article  PubMed  CAS  Google Scholar 

  423. Zeiske W, Van Driessche W (1986) Impairment of Na transport across frog skin by TI +: effects on turnover, area density and saturation kinetics of apical Na channels. Pflugers Arch 407: 145–152

    Article  PubMed  CAS  Google Scholar 

  424. Zeiske W, Van Driessche W, Ziegler R (1986) Current-noise analysis of the basolateral route for K+ ions across a K+-secreting insect midgut epithelium (Manduca sexta). Pflugers Arch 407: 657–663

    Article  PubMed  CAS  Google Scholar 

  425. Zeiske W, Wills NK, Van Driessche W (1982) Na+ channels and amiloride-induced noise in the mammalian colon epithelium. Biochim Biophys Acta 688: 201–210

    Article  PubMed  CAS  Google Scholar 

  426. Zeuthen T, Christensen O, Cherksey B (1987) Electrodiffusion of Cl- and K+ in epithelial membranes reconstituted into planar lipid bilayers. Pflugers Arch 408: 275–281

    Article  PubMed  CAS  Google Scholar 

  427. Zweifach A, Lewis SA (1988) Characterization of a partially degraded Na+ channel from urinary tract epithelium. J Membr Biol 101: 49–56

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eaton, D.C., Marunaka, Y., Ling, B.N. (1992). Ion Channels in Epithelial Tissue: Single-Channel Properties. In: Schafer, J.A., Christensen, P., Ussing, H.H., Giebisch, G.H. (eds) Membrane Transport in Biology. Membrane Transport in Biology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76983-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76983-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76985-6

  • Online ISBN: 978-3-642-76983-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics