Advertisement

Interaction of Interleukin-2 with its Cell Surface Receptors: Interpretation of Equilibrium Binding Experiments via Scatchard Plots

  • Alan S. Perelson
  • Byron Goldstein
Conference paper
Part of the NATO ASI Series book series (volume 66)

Abstract

The high affinity receptor for interleukin 2 (IL-2) is composed of at least two chains, a p55 chain that binds IL-2 with low affinity and a p75 chain that binds with intermediate affinity. Two molecular mechanisms have been proposed for the formation of the high affinity receptor-ligand complex. The affinity conversion model proposed by Honjo and coworkers (Saito et al., 1988) suggests that the high affinity receptor is formed via stepwise binding reactions in which IL-2 first binds to the p55 chain and the resulting complex then associates with the p75 chain to form a high affinity ternary complex. In the preformed heterodimer model the p55 and p75 chains form a non-covalently linked high affinity heterodimer in the absence of IL-2. We analyze these models theoretically and show that they can be distinguished on the basis of equilibrium binding experiments using cell lines expressing different numbers of p55 chains. We show that published IL-2 binding studies are consistent with a model in which a large concentration of preformed heterodimers is present on the cell surface and inconsistent with a model in which preformed heterodimers are absent from the cell surface.

Keywords

Light Chain Equilibrium Constant Heavy Chain Initial Slope Scatchard Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dukovich, M., Wano, Y., Thuy, L. T. B., P. Katz, Cullen, B. R., Kehrl, J. H. and Greene, W. C. (1987). A second human interleukin-2 binding protein that may be a component of high-affinity interleukin-2 receptors. Nature 327, 518–522.PubMedCrossRefGoogle Scholar
  2. Duprez, V., Cornet, V. and Dautry-Varsat, A. (1988). Down-regulation of high affinity interleukin 2 receptors in a human tumor T cell line. J. Biol Chem. 263, 12860–12865.PubMedGoogle Scholar
  3. Goldstein, B. (1975). Theory of hapten binding to IgM: The question of repulsive interactions between binding sites. Biophys. Chem. 3, 363–367.PubMedCrossRefGoogle Scholar
  4. Goldstein, B., Jones, D., Kevrekidis, I. G., and Perelson, A. S. (1992). Evidence for p55-p75 heterodimers in the absence of interleukin-2 from Scatchard plot analysis. Int. Immunol. 4, 23–32..PubMedCrossRefGoogle Scholar
  5. Hatakeyama, M., Tsudo, M., Minamoto, S., Kono, T., Doi, T., Miyata, T., Miyasaka, M. and Taniguchi, T. (1989). Interleukin-2 receptor 3 chain gene: Generation of three receptor forms by cloned human a and /3 chain cDNA’s. Science 244, 551–556.PubMedCrossRefGoogle Scholar
  6. Hayashida, K., Kitamura, T., Gorman, D. M., Arai, K., Yokota, T., and Miyajima, A. (1990). Molecular cloning of the second subunit of the receptor for human granulocytemacrophage colony-stimulating factor (GM-CSF): Reconstitution of a high affinity GM-CSF receptor. Proc. Natl. Acad. Set. USA 87, 9655–9659.CrossRefGoogle Scholar
  7. Hill, T. L. (1977). Free Energy Transduction in Biology. The Steady-State Kinetic and Thermodynamic Formalism. Academic Press, New York. p. 4.Google Scholar
  8. Jones, D. A., Kevrekidis, I. G., Perelson, A. S. and Goldstein, B. G. (1989). A model of IL-2 binding and receptor-mediated internalization. Paper No. 17e. Extended Abstracts and Papers, Am. Inst. Chem. Eng. 1989 Annual Meeting, San Francisco, CA.Google Scholar
  9. Kondo, S., Shimizu, A., Saito, Y., Kinoshita, M. and Honjo, T. (1986). Molecular basis for different affinity states of the interleukin 2 receptor: Affinity conversion model. Proc. Natl. Acad. Sci. USA 83, 9026–9029.PubMedCrossRefGoogle Scholar
  10. Robb, R. J., Greene, W. C., and Rusk, C. M. (1984). Low and high affinity cellular receptors for interleukin 2: Implications of the level of Tac antigen. J. Exp. Med. 160, 1126–1146.PubMedCrossRefGoogle Scholar
  11. Robb, R. J. and Greene, W. C. (1987). Internalization of interleukin 2 is mediated by the ¡3 chain of the high-affinity interleukin 2 receptor. J. Exp. Med. 165, 1201–1206.PubMedCrossRefGoogle Scholar
  12. Robb, R. J. and Rusk, C. M. (1986). High and low affinity receptors for interleukin 2: Implications of pronase, phorbol ester, and cell membrane studies upon the basis for differential ligand affinities. J. Immunol. 137, 142–149.PubMedGoogle Scholar
  13. Robb, R. J., Rusk, C. M., Yodoi, J. and Greene, W. C. (1987). Interleukin 2 binding molecule distinct from the Tac protein: Analysis of its role in formation of high-affinity receptors. Proc. Natl. Acad. Sci. USA 84, 2002–2006.PubMedCrossRefGoogle Scholar
  14. Saito, Y., Sabe, H., Suzuki, N., Kondo, S., Ogura, T., Shimizu, A. and Honjo, T. (1988). A large number of L chains (Tac) enhance the association rate of interleukin 2 to the high affinity site of the interleukin 2 receptor. J. Exp. Med. 168, 1563–1572.PubMedCrossRefGoogle Scholar
  15. Saragovi, H. and T. R. Malek. (1988). Direct identification of the murine IL-2 receptor p55-p75 heterodimer in the absence of IL-2. J. Immunol 141, 476–482.PubMedGoogle Scholar
  16. Shimizu, A., Kondo, S., Sabe, H., Ishida, N., and Honjo, T. (1986). Structure and function of the interleukin 2 receptor: Affinity conversion model. Immunol. Rev. 92, 103–120.PubMedCrossRefGoogle Scholar
  17. Smith, K. A. (1988). Interleukin-2: Inception, impact, and implications. Science 240, 1169–1176.PubMedCrossRefGoogle Scholar
  18. Smith, K. A. (1989). The interleukin 2 receptor. Ann. Rev. Cell Biol. 5, 397–425.PubMedCrossRefGoogle Scholar
  19. Smith, K. A. and Cantrell, D. A. (1985). Interleukin 2 regulates its own receptors. Proc. Natl. Acad. Sci. USA 82, 864–868.PubMedCrossRefGoogle Scholar
  20. Takaki, S., Mita, S., Kitamura, T., Yonehara, S., Yamaguchi, N., Tominaga, A., Miyajima, A., and Takatsu, K. (1991). Identification of the second subunit of the murine interleukin-5 receptor: Interleukin-3 receptor-like protein, AIC2B is a component of the high affinity interleukin-5 receptor. EMBO J. 10, 2833–2838.PubMedGoogle Scholar
  21. Tavernier, J., Devos, R., Cornelis, S., Tuypens, T., Van der Heyden, J., Fiers, W., and Plaetinck, G. (1991). A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific a chain and a ¡3 chain shared with the receptor for GM-CSF. Cell 66, 1175–1184.PubMedCrossRefGoogle Scholar
  22. Teshigawara, K., H-M. Wang, K. Kato and K. A. Smith. (1987). Interleukin 2 high affinity receptor expression requires two distinct binding proteins. J. Exp. Med. 165, 223–238.PubMedCrossRefGoogle Scholar
  23. Tsudo, M., Kozak, R. W., Goldman, C. IC. and Waldmann, T. A. (1987). Contribution of a p75 interleukin 2 binding peptide to a high-affinity interleukin 2 receptor complex. Proc. Natl Acad. Sci. USA 84, 4215–4218.PubMedCrossRefGoogle Scholar
  24. Tsudo, M., Karasuyama, H., Kitamura, F., Tanaka, T., Kubo, S., Yamamura, Y., Tamatani, T., Hatakeyama, M., Taniguchi, T. and Miyasaka, M. (1990). The IL-2 receptor /?-chain (p70). Ligand binding ability of the cDNA-encoding membrane and secreted forms. J. Immunol 145, 599–606.PubMedGoogle Scholar
  25. Wang, H.-M. and K. A. Smith. (1987). The interleukin 2 receptor: Functional consequences of its bimolecular structure. J. Exp. Med. 166, 1055–1069.PubMedCrossRefGoogle Scholar
  26. Yamaguchi, A., T. Ide, M. Hatakeyama, T. Doi, T. Kono, T. Uchiyama, K. Kikuchi, T. Taniguchi and T. Uede. (1989). Structure of the functional interleukin-2 receptor. Int. Immunol 1, 160–168.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Alan S. Perelson
    • 1
  • Byron Goldstein
    • 1
  1. 1.Theoretical Biology and Biophysics Group, Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations