Structure-Function of the Colicin E1 Ion Channel: Voltage-Driven Translocation and Gating of a Tetra- (or Hexa-) Helix Channel

  • W. A. Cramer
  • F. S. Cohen
  • C. V. Stauffacher
  • Y.-L. Zhang
  • A. R. Merrill
  • H. Y. Song
  • P. Elkins
Part of the NATO ASI Series book series (volume 65)

Abstract

The problem of the formation and gating of the colicin El (or Ia, Ib, A, B, N) ion channel differs from that of the more traditionally studied eukaryotic ion channels because the toxin-like colicin molecules have two lives, one in solution and an after-life following passage into the membrane bilayer. Thus, the problem of formation of the colicin channel structure is related to problems of protein import into membranes. The basic properties of the membrane import and insertion processes for the channel-forming domain of the 522 residue colicin El molecule are: (a) the 178–187 residue COOH-terminal channel peptide has a predominantly (50–60%) α-helical conformation in solution (Brunden et al., 1984); (b) the helical content, if not the same helical domains, is preserved in channel peptide-proteoliposomes (Rath et al., 1991); (c) channel activity in vitro requires an acidic pH (Davidson et al., 1985), (d) membranes with an acidic lipid composition or a small amount of added non-ionic detergent (Bullock & Cohen, 1986), and (e) a transnegative membrane potential (Schein et al., 1978; Bullock et al, 1983; Peterson & Cramer, 1987). The membrane potential requirement makes the channel “voltage-gated.” This requirement was also inferred from studies on the in vivo cytotoxic action of the colicin molecule (Jetten & Jetten, 1975), and is reflected in such experiments by the decreased sensitivity of E. coli cells in the stationary phase of growth.

Keywords

Crystallization Hexa Trypsin Hydrochloride Tryptophan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams CK, Jakes KS, Finkelstein A, Slatin SL (1991) Identification of a translocated gating charge in a voltage-dependent channel. Colicin El channels in planar phospholipid bilayer membranes. J Gen Physiol 98:77–93PubMedCrossRefGoogle Scholar
  2. Baty D, Lakey J, Pattus F, Lazdunski C (1990) A 136 amino acid residue COOH-terminal fragment of colicin A is endowed with ionophoric activity. Eur J Biochem 189:409–413PubMedCrossRefGoogle Scholar
  3. Brunden KR, Uratani Y, Cramer WA (1984) Dependence of the conformation of a colicin El channel-forming peptide on the acidic pH and solvent polarity. J Biol Chem 259:7682–7687PubMedGoogle Scholar
  4. Bullock JO, Cohen FS (1986) Octyl glucoside promotes incorporation of channels into planar phospholipid bilayers.Biochim Biophys Acta 856:101–108PubMedCrossRefGoogle Scholar
  5. Bullock JO, Cohen FS, Dankert JR, Cramer WA (1983) Comparison of the macroscopic and single channel conductance properties of colicin El and its C-terminal tryptic peptide. J Biol Chem 258:9908–9912PubMedGoogle Scholar
  6. Cleveland BM, Slatin S, Finkelstein A, Levinthal C (1983) Structure-function for a voltage-dependent ion channel: properties of a COOH-terminal fragment of colicin El. Proc Natl Acad Sci USA 80:3706–3710PubMedCrossRefGoogle Scholar
  7. Cramer WA, Cohen FS, Merrill AR, Song HY (1990) Structure and dynamics of the colicin El channel. Molec Microbiol 4:519–526.CrossRefGoogle Scholar
  8. Davidson VL, Brunden KR, Cramer WA (1985) An acidic pH requirement for insertion of colicin El into artificial membrane vesicles: relevance to the mechanism of action of colicins and certain toxins. Proc Natl Acad Sci USA 82:1386–1390PubMedCrossRefGoogle Scholar
  9. Elkins P, Fisher A, Merrill AR, Cramer WA, Stauffacher CV (1990) Crystallization of colicin El pore forming fragment. Biophys J 57:419a.Google Scholar
  10. Grove A, Tomich JM, Montai M (1991) A molecular blueprint for the pore-forming structure of voltage-gated calcium channels. Proc Nat Acad Sci USA 88:6418–6422PubMedCrossRefGoogle Scholar
  11. Jetten AM, Jetten MER (1975) Energy requirement for the initiation of colicin action in E. coli. Biochim Biophys Acta 387:12–22PubMedCrossRefGoogle Scholar
  12. Merrill AR, Cramer WA (1989) The mechanism of colicin El channel formation: pH-dependent unfolding and membrane potential dependent insertion into the lipid bilayer. Biophys J 55:247aGoogle Scholar
  13. Merrill AR, Cramer WA (1990a) Protein translocation in the voltage gating mechanism of the colicin El ion channel. Biophys J 57:316aGoogle Scholar
  14. Merrill AR, Cramer WA (1990b) Identification of a voltage-responsive segment of the potential-gated colicin El ion channel. Biochemistry 29:8529–8534PubMedCrossRefGoogle Scholar
  15. Merrill AR, Cohen FS, Cramer, WA (1990) On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state. Biochemistry 29:5829–5836.PubMedCrossRefGoogle Scholar
  16. Olsnes S, Moskaug JO, Stenmark H, Sandvig K (1988) Diphtheria toxin entry: protein translocation in the reverse direction. Trends Biochem Sci 13:348–351PubMedCrossRefGoogle Scholar
  17. Parker MW, Pattus F, Tucker AD, Tsernoglou D (1989) Structure of the membrane-pore-forming fragment of colicin A. Nature 337:93–96PubMedCrossRefGoogle Scholar
  18. Peterson AA, Cramer WA (1987) Voltage-dependent monomelic channel activity of colicinEl in artificial membrane vesicles. J Mem Biol 99:197–204CrossRefGoogle Scholar
  19. Randall LL, Hardy SJS (1986) Correlation of competence for export with lack of tertiary structure of the mature species: A study in vivo of maltose-binding protein in E.coli. Cell 46:421–428CrossRefGoogle Scholar
  20. Rath P, Bousché O, Merrill AR, Cramer WA, Rothschild KJ (1991) FTIR evidence for a predominantly α-helical structure of the membrane-bound channel forming C-terminal peptide of colicin El. Biophys 159:516–522CrossRefGoogle Scholar
  21. Raymond L, Slatin SL, Finkelstein A (1985) Channels formed by colicin El in planar lipid bilayers are large and exhibit pH-dependent ion selectivity. J Mem Biol 84:173–181CrossRefGoogle Scholar
  22. Schein S J, Kagan BL, Finkelstein A (1978) Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 276:159–163PubMedCrossRefGoogle Scholar
  23. Shirabe K, Peterson AA, Shiver JW, Cohen FS, Nakazawa A, Cramer WA (1989) Decrease of anion selectivity caused by mutation of Thr501 and Gly502 to Glu in the hydrophobic domain of the colicin El channel. J Biol Chem 264:1951–1957PubMedGoogle Scholar
  24. Song HY (1990) Ph.D. Thesis, Purdue University. Membrane topography of E. coli ColEl gene products: the channel forming domain and the immunity protein of colicin El. 206 pp.Google Scholar
  25. Song HY, Cramer WA (1991) Membrane topography of ColEl gene products: (I) The hydrophobic anchor of the colicin El channel is a helical hairpin. J Bacteriol 173:2927–2934PubMedGoogle Scholar
  26. Xu S, Peterson AA, Montecucco C, Cramer WA (1988) Dynamic properties of membrane proteins. Reversible insertion into membrane vesicles of a colicin El channel-forming peptide. Proc Natl Acad Sci, USA 85:7531–7535PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • W. A. Cramer
    • 1
  • F. S. Cohen
    • 2
  • C. V. Stauffacher
    • 1
  • Y.-L. Zhang
    • 1
  • A. R. Merrill
    • 3
  • H. Y. Song
    • 1
  • P. Elkins
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA
  2. 2.Department of PhysiologyRush Medical CollegeChicagoUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of GuelphGuelphCanada

Personalised recommendations