Skip to main content

Stochastic Modeling of a Water Resource System: Analytical Techniques Versus Synthetic Approaches

  • Conference paper
Water Resources Engineering Risk Assessment

Part of the book series: NATO ASI Series ((ASIG,volume 29))

Abstract

This paper deals with bicriterion (irrigation & water quality) weekly operation of a water resource system during dry periods. Two ways of handling the problem are proposed and compared for a real case study:

  • a stochastic dynamic programming model using system analysis language;

  • a more “synthetic” model using direct hydrological and water resources concepts.

Numerical results based on historical series are derived in both cases The insight provided by the water resources engineering approach is pointed out and guidelines for model choice are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Askew J.A. (1974), Optimum reservoir operating policies and the imposition of a reliability constraint. Water Resources Research 10, 1, p.51–56.

    Article  Google Scholar 

  • Bellman R.E. (1957), Dynamic programming. Princeton University Press,.

    Google Scholar 

  • Bodo B.A., Unny T.E. (1990), Modeles linéaires stochastiques théoriques pour la reponse des petits bassins. Revue des sciences de ľeau 3, p.151–182.

    Google Scholar 

  • Buras N. (1972), Scientific allocation of water resources. Elsevier, N. Y.

    Google Scholar 

  • Colleter P., Delebecque F., Falgarone F. and Quadrat J.P. (1978), Application du controle stochastique a la gestion des moyens de production d’energie en nouvelle-Caledonie. “E.D.F. Boulletin de la direction des etudes et rechereche, Serie C. Mathematiques- Informatique” (E.D.F.), p. 1–28.

    Google Scholar 

  • Dodu J.C., Goursat M., Hertz A., Quadrat J.P. and Viot M. (1981), Methodes de gradient stochastique pour l’optimisation des investissements dans un reseau electrique, E.D.F. 2, p.133–164.

    Google Scholar 

  • Fang Z.X., Voron B., Bocquillon C. (1989), Programmation dynamique: Application a la gestion d’une retenue pour l’irrigation. Hydrolo. Sci. J. 34(4), p.415–424.

    Article  Google Scholar 

  • Hashimoto T., Stedinger J.R. and Loucks D.P. (1982), Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water resources research 18, 1, p. 14–20.

    Article  Google Scholar 

  • Houghtalen R.J. and Loftis J.C. (1988), Irrigation water delivery system operation via aggregate state dynamic programming. Water resources bulletin 24, 2, p.427–434.

    Google Scholar 

  • Klemes V. (1977), Discrete representation of storage for stochastic reservoir optimization. Water resources research 13, 1, p.149–158.

    Article  Google Scholar 

  • Klemes V. (1978), The unreliability of reliability estimates of storage reservoir performance based on short streamflow records. In “Water resource management, Water resources publications, Fort Collins, Colorado”, p. 193–205.

    Google Scholar 

  • Krzysztofowicz R. (1982), Utility criterion for water supply: quantifying value of water and risk attitude. In “Decision-Making for hydrosystems-Forecasting and operation” (ED: T.Unny), 43–62.

    Google Scholar 

  • Masse P. (1959), Le choix des investissements. Dunod.

    Google Scholar 

  • Mergos G.J. (1987), Evaluation of irrigation projects under uncertainty: A symmetric quadratic programming approach. Water resources management 1, p.45–56.

    Article  Google Scholar 

  • Simonovic S.P. and Orlob T.G. (1984), Risk-reliability programming for optimal water quality control. Water resources research 20, 6, p.639–646.

    Article  Google Scholar 

  • Tapiero C.S. (1988), Applied stochastic models & control in management. In “Advanced series in management”. V12. North–Holland.

    Google Scholar 

  • Turgeon A. (1981), Optimal operation of multireservoir power systems with stochastic inflows. Water resources research 16, 2, p.275–283.

    Article  Google Scholar 

  • Yakowitz S. (1982), Dynamic programming applications in water resources. Water resources research 18, 4, p.673–696.

    Article  Google Scholar 

  • Yeh W.W.G. (1985), Reservoir management and operations models: S state–of—the–art review. Water resources research 21, 12, p.1797–1818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parent, E., Lebdi, F., Hurand, P. (1991). Stochastic Modeling of a Water Resource System: Analytical Techniques Versus Synthetic Approaches. In: Ganoulis, J. (eds) Water Resources Engineering Risk Assessment. NATO ASI Series, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76971-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76971-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76973-3

  • Online ISBN: 978-3-642-76971-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics