Advertisement

Pseudomonas aeruginosa Exoenzyme S

  • J. Coburn
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 175)

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that secretes a number of potential virulence factors. Two of these, exotoxin A and exoenzyme S, catalyze the transfer of the ADP-ribose moiety of NAD to proteins in eukaryotic cells. Exotoxin A catalyzes the ADP-ribosylation of elongation factor 2 (EF-2), leading to disruption of protein synthesis. It has been well characterized and is reviewed elsewhere in this volume. Exoenzyme S has been less thoroughly studied, but several lines of evidence suggest that it might play a role in pathogenesis. In preliminary experiments exoenzyme S appeared to be unselective in choice of substrate proteins, but recent work has shown that it preferentially ADP-ribosylates several of the low-molecular weight GTP-binding proteins. Furthermore, like cholera toxin, exoenzyme S requires a eukaryotic protein for enzymic activity.

Keywords

Pseudomonas Aeruginosa Cholera Toxin Diphtheria Toxin Potential Virulence Factor Culture Supernatant Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aktories K, Barmann M, Ohishi I, Tsuyma S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322: 390CrossRefGoogle Scholar
  2. Björn MJ, Pavlovskis OR, Thompson MR, Iglewski BH (1979) Productibn of exoenzyme S during Pseudomonas aeruginosa infections in burned mice. Infect Immun 24: 837–842PubMedGoogle Scholar
  3. Braun U, Habermann B, Just I, Aktories K, Vandekerckhove J (1989) Purification of the 22-kDa protein substrate of botulinum ADP-ribosyltransferase C3 from porcine brain cytosol and its characterization as a GTP-binding protein highly homologous to the rho gene product. FEBS Lett 243: 70–76PubMedCrossRefGoogle Scholar
  4. Chardin P, Tavitian A (1986) The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J 5: 2203–2208PubMedGoogle Scholar
  5. Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rhoC is ADP-ribosylated by Colstridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMÖO J 8:1087–1092Google Scholar
  6. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP-binding proteins to exocytic and entocytic compartments. Cell 62: 317–329PubMedCrossRefGoogle Scholar
  7. Coburn J, Dillon ST, Iglewski BH, Gill DM (1989a) Exoenzyme S of Pseudomonas aeruginosa ADP-ribosylates the intermediate filament protein vimentin. Infect Immun 57: 996–998PubMedGoogle Scholar
  8. Coburn J, Wyatt RT, Iglewski BH, Gill Dm (1989b) Several GTP-binding proteins, including p21cHras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem 264: 9004–9008PubMedGoogle Scholar
  9. Coburn J, Kane AV, Feig L, Gill DM (1991) Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyl transferase activity. J Biol Chem 266: 6438–6446PubMedGoogle Scholar
  10. Collier RJ (1975) Diphtheria toxin: mode of action and structure. Bacteriol Rev 39: 54–85PubMedGoogle Scholar
  11. Drazin R, Kandel J, Collier RJ (1971) Structure and activity of diphtheria toxin: attack by trypsin at a specific site within the intact molecule. J Biol Chem 246:1504–1510PubMedGoogle Scholar
  12. Evans T, Brown ML, Fräser ED, Northup JK (1986) Purification of the major GTP-binding proteins from human placental membranes. J Biol Chem 261: 7052–7059PubMedGoogle Scholar
  13. Gill DM, Coburn J (1987) ADP-ribosylation by cholera toxin: functional analysis of a cellular system that stimulates the enzymic activity of cholera toxin fragment A1. Biochemistry 26: 6364–6371PubMedCrossRefGoogle Scholar
  14. Gill DM, Meren R (1978) ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci USA 75:3050–3054PubMedCrossRefGoogle Scholar
  15. Goud B, Salminen A, Walworth NC, Novick PJ (1988) A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53: 753–768PubMedCrossRefGoogle Scholar
  16. Hayashi T, Kamio Y, Hishinuma F, Usami Y, Titani K, Terawaki Y (1989) Pseudomonas aeruginosa cytotoxin: the nucleotide sequence of the gene and the mechanism of activation of the protoxin. Mol Microbiol 3: 861–868PubMedCrossRefGoogle Scholar
  17. Honjo T, Nishizuka Y, Hayaishi O (1968) Diphtheria toxin-dependent adenosine ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243: 3553–3555PubMedGoogle Scholar
  18. Iglewski BH (1988) Pseudomonas toxins. In: Hardegree MC, Tu AT (eds) Handbook of toxins, vol. 4. Dekker, New York, pp 249–265Google Scholar
  19. Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72: 2284–2288PubMedCrossRefGoogle Scholar
  20. Iglewski BH, Sadoff J, Björn MJ, Maxwell ES (1978) Pseudomonas aeruginosa exoenzyme S: an adenosine diphospate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci USA 75:3211–3215PubMedCrossRefGoogle Scholar
  21. Jurnak F, Heffron S, Bergmann E (1990) Conformational changes involved in the activation of ras p21: implications for related proteins. Cell 60: 525–528PubMedCrossRefGoogle Scholar
  22. Kahn RA, Gilman AG (1986) The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem 261:7906–7911PubMedGoogle Scholar
  23. Madaule P, Axel R (1985) A novel ras related gene family. Cell 41:31–40PubMedCrossRefGoogle Scholar
  24. Mekalanos JJ, Collier RJ, Roming WR (1979) Enzymic activity of cholera toxin: relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 254:5855–5861PubMedGoogle Scholar
  25. Melancon P, Glick BS, Malhotra V, Weidman PJ, Serafini T, Gleason ML, Orci L, Rothman JE (1987) Involvement of GTP binding “G” proteins in transport through the Golgi stack. Cell 51:1053–1062PubMedCrossRefGoogle Scholar
  26. Middlebrook JL, Dorland RB (1984) Bacterial toxins: cellular mechanisms of action. Microbiol Rev 48:199–221PubMedGoogle Scholar
  27. Murayama T, Ui M (1983) Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J Biol Chem 258: 3319–3326PubMedGoogle Scholar
  28. Nicas Tl, Iglewski BH (1984) Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun 45:470–474PubMedGoogle Scholar
  29. Nicas Tl, Iglewski BH (1985) Contribution of exoenzyme S to the virulence of Pesudomonas aeruginosa. Antibiot Chemother 36: 40–48PubMedGoogle Scholar
  30. Nicas Tl, Bradley J, Lochner JE, Iglewski (1985a) The role of exoenzyme S in infections with Pseudomonas aeruginosa. J Infect Dis 152: 716–721PubMedCrossRefGoogle Scholar
  31. Nicas Tl, Frank DW, Stenzel P, Lile JD, Iglewski BH (1985b) Role of exoenzyme S in chronic Pseudomonas aeruginosa lung infections. Eur J Clin Microbiol 4: 175–179PubMedCrossRefGoogle Scholar
  32. Nöda M, Kato I, Wang X, Hirayama T (1990) ADP-ribosylation and activation of Pl-specific phospholipase C by Pseudomonal leukocidin (Abstr) In: Basic research and clinical aspects of Pseudomonas aeruginosa infection 3rd International Symposium, TokyoGoogle Scholar
  33. Olsnes S, Reisbig R, Eiklid K (1981) Subunit structure of Shigella cytotoxin. J Biol Chem 256: 8732–8738PubMedGoogle Scholar
  34. Pizon V, Chardin P, Lerosey I, Oloffsson B, Tavitian A (1988) Human cDNAs rapl and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the “effector” region. Oncogene 3: 201–204PubMedGoogle Scholar
  35. Popoff MR, Boquet P (1988) Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem Biophys Res Commun 152:1361–1368PubMedCrossRefGoogle Scholar
  36. Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56: 2229–2306Google Scholar
  37. Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8: 418–426PubMedGoogle Scholar
  38. Salminen A, Novick PJ (1987) A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49: 5527–5538CrossRefGoogle Scholar
  39. Santos E, Nebreda AR (1989) Structural and functional properties of ras proteins. FASEB J 3:2151–2163PubMedGoogle Scholar
  40. Sokol PA, Iglewski BH, Hager TA, Sadoff JC, Cross AS, McManus A, Farber BF, Iglewski WJ (1981) Production of exoenzyme S by clinical isolates ofPseudomonas aeruginosa. Infect Immun 34: 147–153PubMedGoogle Scholar
  41. Sokol PA, Dennis JJ, MacDougall PC, Sexton M, Woods DE (1990) Cloning and expression of the Pseudomonas aeruginosa exoenzyme S toxin gene. Microb Pathog 8: 243–257PubMedCrossRefGoogle Scholar
  42. Thompson MR, Björn MJ, Sokol PA, Lile JD, Iglewski BH (1980) Exoenzyme S: an ADP-ribosyl transferase produced by Pseudomonas aeruginosa. In: Smulson M, Sugimura T (eds) Novel ADP-ribosylations of regulatory enzymes and proteins. Elsevier, Amsterdam, pp 425–432Google Scholar
  43. Touchot N, Chardin P, Tavitian A (1987) Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related-cDNAs from a rat brain library. Proc Natl Acad Sci USA 84: 8210–8214PubMedCrossRefGoogle Scholar
  44. Trahey M, McCormick F (1987) A cytoplasmatic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545PubMedCrossRefGoogle Scholar
  45. Vandekerckhove J, Schering B, Barmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52PubMedCrossRefGoogle Scholar
  46. Vasil ML, Kabat D, Iglewski BH (1977) Structure-activity relationships of an exotoxin of Pseudomonas aeruginosa. Infect Immun 16:353–361PubMedGoogle Scholar
  47. Wolfman A, Macara IG (1990) A cytosolic protein catalyzes the release of GDP from p21ras. Science 248: 67–69PubMedCrossRefGoogle Scholar
  48. Woods DE, Hwang WS, Shahrabadi MS, Que JU (1988) Alteration of plumonary structure by Pseudomonas aeruginosa exoenzyme S. J Med Microbiol 26:133–141PubMedCrossRefGoogle Scholar
  49. Woods DE, Que JU (1987) Purification of Pseudomonas aeruginosa exoenzyme S. Infect Immun 55: 579–586PubMedGoogle Scholar
  50. Woods DE, Schäffer MS, Rabin HR, Campbell GD, Sokol PA (1986) Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of sources. J Clin Microbiol 24:260–264PubMedGoogle Scholar
  51. Woods DE, Sokol PA (1985) Use of transposon mutants to assess the role of exoenzyme S chronic pulmonary disease due to Pseudomonas aeruginosa. Eur J Clin Microbiol 4:163–169dPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1992

Authors and Affiliations

  • J. Coburn
    • 1
  1. 1.Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonUSA

Personalised recommendations