Skip to main content

Clostridial Actin-ADP-Ribosylating Toxins

  • Chapter
ADP-Ribosylating Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 175))

Abstract

Several ADP-ribosylating toxins, such as cholera toxin, pertussis toxin, diphtheria toxin, and Pseudomonas aeruginosa exotoxin A have been the focus of intensive research for many years. Studies on these toxins, which are described in other chapters of this volume, have brought about insights into the pathogenetic mechanisms of diseases related to the toxin-producing bacteria. Furthermore, especially cholera and pertussis toxins, which ADP-ribosylate GTP-binding proteins, have been proved to be excellent instruments for elucidation of the physiological functions of their target proteins (for recent reviews see also Moss and Vaughan 1990)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aktories K (1990) Clostridial ADP-ribosyltransferase—modification of low molecular weight GTP-binding proteins and of actin by clostridial toxins. Med Microbiol Immunol 179:123–136

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986a) Botulinum C2 toxin ADP-ribosylates actin. Nature 322: 390–392

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Ankenbauer T, Schering B, Jakobs KH (1986b) ADP-ribosylation of platelet actin by botulinum C2 toxin. Eur J Biochem 161:155–162

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Weller U, Chhatwal GS (1987)Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Just I, Rosenthal W (1988) Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochem Biophys Res Commun 156: 361–367

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Reuner K-H, Presek P, Bärmann M (1989) Botulinum C2 toxin treatment increases the G-actin pool in intact chicken cells: a model for the cytopathic action of actin-ADP-ribosylating toxins. Toxicon 27:989–993

    Article  PubMed  CAS  Google Scholar 

  • AL-Mohanna FA, Ohishi I, Hallett MB (1987) Botulinum C2 toxin potentiates activation of the neutrophil oxidase. FEBS Lett 219:40–44

    Article  PubMed  CAS  Google Scholar 

  • Brenner SL, Korn ED (1980) The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. J Biol Chem 255: 841–844

    PubMed  CAS  Google Scholar 

  • Böttinger H, Reuner KH, Aktohes K (1987) Inhibition of histamine release from rat mast cells by botulinum C2 toxin. Int Archs Allergy Appl Immunol 84: 380–384

    Article  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75: 2669–2673

    Article  PubMed  CAS  Google Scholar 

  • Cooper JM (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  PubMed  CAS  Google Scholar 

  • Eklund MW, Poysky FT (1972) Activation of a toxic component ofClostridium botulinum types C and D by trypsin. Appl Microbiol 24:108–113

    PubMed  CAS  Google Scholar 

  • Eklund MW, Poysky FT, Reed SM, Smith CA (1971) Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science 172: 480–482

    Article  PubMed  CAS  Google Scholar 

  • Eklünd MW, Poysky FT, Reed SM (1972) Bacteriophage and the toxigenicity ofClostridium botulinum type D. Nature [New Biol] 235:16–17

    Google Scholar 

  • Geipel U, Just I, Schering B, Haas D, Aktories K (1989) ADP-ribosylation of actin causes increase in the rate of ATP exchange and inhibition of ATP hydrolysis. Eur J Biochem 179: 229–232

    Article  PubMed  CAS  Google Scholar 

  • Geipel U, Just I, Aktories K (1990) Inhibition of cytochalasin D-stimulated G-actin ATPase by ADP-ribosylation with Clostridium perfringens iota toxin. Biochem J 266: 335–339

    PubMed  CAS  Google Scholar 

  • Gill DM (1977) Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res 8: 85–118

    PubMed  CAS  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  PubMed  CAS  Google Scholar 

  • Hsia JA, Tsai S-C, Adamik R, Yost DA, Hewlett EL, Moss L (1985) Amino acid-specific ADP-ribosylation. J Biol Chem 260:16187–16191

    PubMed  CAS  Google Scholar 

  • Just I, Geipel U, Wegner A, Aktories K (1990) De-ADP-ribosylation of actin by Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin. Eur J Biochem 192: 723–727

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E, Lindberg U (1974) Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Nat Acad Sci 71: 4742–4746

    Article  PubMed  CAS  Google Scholar 

  • Leppla SH (1982) Anthrax toxin edema factor: bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells. Proc Natl Acad Sci USA 79: 3162–3166

    Article  PubMed  CAS  Google Scholar 

  • Matter K, Dreyer F, Aktories K (1989) Actin involvement in exocytosis from PC12 cells: studies on the influence of botulinum C2 toxin on stimulated noradrenaline release. J Neurochem 52:370–376

    Article  PubMed  CAS  Google Scholar 

  • Mauss S, Koch G, Kreye VAW, Aktories K (1989) Inhibition of the contraction of the isolated longitudinal muscle of the guinea-pig ileum by botulinum C2 toxin: evidence for a role of G/F-actin transition in smooth muscle contraction. Naunyn Schmiedebergs Arch Pharmacol 340: 345–351

    Article  PubMed  CAS  Google Scholar 

  • Mauss S, Chaponnier C, Just I, Aktories K, Gabbiani G (1990) ADP-ribosylation of actin isoforms by C. botulinum C2 toxin and C. perfringens iota toxin. Eur J Biochem 194: 237–241

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (eds) (1990) ADP-ribosylating toxins and G proteins. Insight into signal transduction. American Society for Microbiology, Washington

    Google Scholar 

  • Nakamura S, Serikawa T, Noshida S, Kozaki S, Sakaguchi G (1978) Sporulation and C2 toxin production by Clostridium botulinum type C strains producing no C, toxin. Microbiol Immunol 22:591–596

    PubMed  CAS  Google Scholar 

  • Noda M, Kato I, Matsuda F, Hirayama T (1981) Mode of action of staphylococcal leukocidin: relationship between binding of 125l-labeled S and F components of leukocidin to rabbit polymorphnuclear leukocytes and leukocidin activity. Infect Immun 34: 362–367

    PubMed  CAS  Google Scholar 

  • Norgauer J, Kownatzki E, Seifert R, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates actin and enhances O2− production and secretion but inhibits migration of activated human neutrophils. J Clin Invest 82:1376–1382

    Article  PubMed  CAS  Google Scholar 

  • Norgauer J, Just I, Aktories K, Sklar LA (1989) Influence of botulinum C2 toxin on F-actin and AMormyl peptide receptor dynamics in human neutrophils. J Cell Biol 109:1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Ohishi I (1983a) Response of mouse intestinal loop to botulinum C2 toxin: enterotoxic activity induced by cooperation of nonlinked protein components. Infect Immun 40: 691–695

    PubMed  CAS  Google Scholar 

  • Ohishi I (1983b) Lethal and vascular permeability activities of botulinum C2 toxin induced by separate injection of the two toxin components. Infect Immun 40:336–339

    PubMed  CAS  Google Scholar 

  • Ohishi I (1986) NAD-glycohydrolase activity of botulinum C2 toxin: a possible role of component I in the mode of action of the toxin. J Biochem (Tokyo) 100:407–413

    CAS  Google Scholar 

  • Ohishi I (1987) Activation of botulinum C2 toxin by trypsin. Infect Immun 55:1461–1465

    PubMed  CAS  Google Scholar 

  • Ohishi I, Miyake M (1985) Binding of the two components of C2 toxin to epithelial cells and brush borders of mouse intestine. Infect Immun 48: 769–775

    PubMed  CAS  Google Scholar 

  • Ohishi LOdagiri Y (1984) Histopathological effect of botulinum C2 toxin on mouse intestines. Infect Immun 43: 54–58

    Google Scholar 

  • Ohishi I, Okada Y (1986) Heterogeneities of two components of C2 toxin produced by Clostridium botulinum types C and D. J Gen Microbiol 132:125–131

    PubMed  CAS  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980a) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30: 668–673

    PubMed  CAS  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980b) Vascular permeability activity of botulinum C2 toxin elicited by cooperation of two dissimilar protein components. Infect Immun 31:890–895

    Google Scholar 

  • Ohishi I, Miyake M, Ogura K, Nakamura S (1984) Cytopathic effect of botulinum C2 toxin on tissue-culture cell lines. FEMS Lett Microbiol 23: 281–284

    Article  CAS  Google Scholar 

  • Omann GM, Allen RA, Bokoch GM, Painter RG, Traynor AE, Sklar LA (1987) Signal transduction and cytoskeletal activation in the neutrophil. Physiol Rev 67: 285–322

    PubMed  CAS  Google Scholar 

  • Pollard T, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanism and functions. Annu Rev Biochem 55: 987–1035

    Article  PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P (1988)Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem Biophys Res Commun 152:1361–1368

    Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56: 2299–2306

    PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P, Gill DM, Eklund MW (1990) DNA sequence of exoenzyme C3, an ADP-ribosyltransferase encoded by Clostridum botulinum C and D phages. Nucl Acids Res 18:1291

    Article  PubMed  CAS  Google Scholar 

  • Reuner KH, PreSek P, Boschek CB, Aktories K (1987) Botulinum C2 toxin ADP-ribosylates actin and disorganizes the microfilament network in intact cells. Eur J Cell Biol 43:134–140

    PubMed  CAS  Google Scholar 

  • Ross HE, Warren ME, Barnes J (1949) Clostridium welchii iota toxin: its activation by trypsin. J Gen Microbiol 3:148–152

    Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8: 418–426

    PubMed  CAS  Google Scholar 

  • Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171: 225–229

    Article  PubMed  CAS  Google Scholar 

  • Simpson LL (1982) A comparison of the pharmacological properties of Clostridium botulinum type C1 and C2 toxins. J Pharmacol Exp Ther 223: 695–701

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984) Molecular basis for the pharmacological actions of Clostridium botulinum type C2 toxin. J Pharmacol Exp Ther 230: 665–669

    PubMed  CAS  Google Scholar 

  • Simpson LL (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251:1223–1228

    PubMed  CAS  Google Scholar 

  • Simpson LL, Stiles BG, Zapeda HH, Wilkins TD (1987) Molecular basis for the pathological actions of Clostridium perfringens iota toxin. Infect Immun 55:118–122

    PubMed  CAS  Google Scholar 

  • Simpson LL, Zepeda H, Ohishi I (1988) Partial characterization of the enzymatic activity associated with the binary toxin (type C2) produced by Clostridium botulinum. Infect Immun 56: 24–27

    PubMed  CAS  Google Scholar 

  • Simpson LL, Stiles BG, Zepeda H, Wilkins TD (1989) Production byClostridium spiroforme of an iotalike toxin that possesses mono (ADP-ribosyl) transferase activity: identification of a novel class of ADP-ribosyltransferases. Infect Immun 57: 255–261

    PubMed  CAS  Google Scholar 

  • Stiles BG, Wilkins TD (1986a) Purification and characterization ofClostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54: 683–688

    PubMed  CAS  Google Scholar 

  • Stiles BG, Wilkins TD (1986b)Clostridium perfringens iota toxin: synergism between two proteins. Toxicon 24: 767–773

    Google Scholar 

  • Sugii S, Kozaki S (1990) Hemagglutinating and binding properties of botulinum C2 toxin. Biochim Biophys Acta 1034:176–179

    Article  PubMed  CAS  Google Scholar 

  • Suttorp N, Polley M, Seybold J, Schnittler H, Aktories K (1991) ADP-ribosylation of G-actin botulinum C2 toxin increases endothelial permeability in vitro. J Chin Invest 87: 1575–1584

    Article  CAS  Google Scholar 

  • Tamura M, Nogimuri K, Murai S, Yajima M, Ito K, Katada T, Ui M, Ishii S (1982) Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21:5516–5522

    Article  PubMed  CAS  Google Scholar 

  • Uchida T (1983) Diphtheria toxin. Pharmacol Ther 19:107–122

    Article  CAS  Google Scholar 

  • Vandekerckhove J, Weber K (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation 14: 123–133

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987)Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225: 48–52

    Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic ß/y-actin in arginine 177. J Biol Chem 263: 696–700

    PubMed  CAS  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    PubMed  CAS  Google Scholar 

  • Weigt C, Just I, Wegner A, Aktories K (1989) Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEBS Lett 246:181–184

    Article  PubMed  CAS  Google Scholar 

  • Wiegers W, Just I, Müller H, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54: 237–245

    PubMed  CAS  Google Scholar 

  • Zepeda H, Considine RV, Smith HL, Sherwin JA, Ohishi I, Simpson LL (1988) actions of the clostridium botulinum binary toxin on the structure and function of y-1 adrenal cells. j pharmacol exp ther 246:1183–1189

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Aktories, K., Wille, M., Just, I. (1992). Clostridial Actin-ADP-Ribosylating Toxins. In: Aktories, K. (eds) ADP-Ribosylating Toxins. Current Topics in Microbiology and Immunology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76966-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76966-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76968-9

  • Online ISBN: 978-3-642-76966-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics