Skip to main content

Diphtheria Toxin and Pseudomonas aeruginosa Exotoxin A: Active-Site Structure and Enzymic Mechanism

  • Chapter
ADP-Ribosylating Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 175))

Abstract

Diphtheria toxin (DT), secreted by lysogenic strains of Corynebacterium diphtheriae carrying the phage-encoded DT gene, was the first ADP-ribosylating toxin for which the molecular mechanism of action was elucidated (Collier 1975; Pappenheimer 1977), and for many years DT has served as an important model system for studying the pathogenesis of bacterial exotoxins (Collier 1982; Jacobson and Jacobson 1989; Moss and Vaughan 1990). DT and the closely related exotoxin A from Pseudomonas aeruginosa(ETA) both catalyze the ADP-ribosylation of a post-translationally modified histidine (diphthamide) on elongation factor 2 (EF-2) (Honjo et al. 1968, 1969; Gill et al. 1969; Iglewski and Kabat 1975; Iglewski et al. 1977). EF-2 is a GTP-binding protein involved in protein biosynthesis by eukaryotic cells. ADP-ribosylated EF-2 is no longer able to mediate polypeptide chain elongation, and consequently, toxin-treated cells lose the ability to synthesize protein and ultimately die. Although toxins have not yet been described in detail, recent studies have yielded relevant information. This chapter will focus on some of the more recent studies and what the findings tell us about the structure of the active site and’the nature of the reaction catalyzed by these toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allured VS, Collier RJ, Carroll SF, McKay DB (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci USA 83:1320–1324

    Article  PubMed  CAS  Google Scholar 

  • Allured VS, Brandhuber BJ, McKay DB (1987) Structure and mechanism of exotoxin A of Pseudomonas aeruginosa. In: Bonavida B, Collier RJ (eds) Membrane-mediated cytotoxicity. Liss, New York, pp 3–7

    Google Scholar 

  • Barbieri JT, Collier RJ (1987) Expression of a mutant, full-length form of diphtheria toxin in Escherichia coli. Infect Immun 55:1647–1651

    PubMed  CAS  Google Scholar 

  • Barbieri JT, Mende-Mueller LM, Rappuoli R, Collier RJ (1989) Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD. Infect Immun 57: 3549–3554

    PubMed  CAS  Google Scholar 

  • Bodley JW (1990) Does diphtheria toxin have nuclease activity? Science 250: 832–838

    CAS  Google Scholar 

  • Brandhuber BJ, Allured VS, Falbel TG, McKay DB (1988) Mapping of the enzymatic active site of Pseudomonas aeruginosa exotoxin A. Proteins Struct Funct Genet 3:146–154

    Article  PubMed  CAS  Google Scholar 

  • Bruce C, Baldwin RL, Lessnick SL, Wisnieski BJ (1990) Diphtheria toxin and its ADP-ribosyl-transferase-defective homologue CRM197 possess deoxy-ribonuclease activity. Proc Natl Acad Sci USA 87: 2995–2998

    Article  PubMed  CAS  Google Scholar 

  • Carroll SF, Collier RJ (1984) NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc Natl Acad Sci USA 81:3307–3311

    Article  PubMed  CAS  Google Scholar 

  • Carroll SF, Collier RJ (1987) Active site of Pseudomonas aeruginosa exotoxin A: glumatic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J Biol Chem 262: 8707–8711

    PubMed  CAS  Google Scholar 

  • Carroll SF, Collier RJ (1988) Amino acid sequence homology between the enzymic domains of diphtheria toxin andPseudomonas aeruginosa exotoxin A. Mol Microbiol 2: 293–296

    Article  PubMed  CAS  Google Scholar 

  • Carroll SF, McCloskey JA, Crain PF, Oppenheimer NJ, Marschner TM, Collier RJ (1985) Photoaffinity labeling of diphtheria toxin fragment A with NAD: structure of the photoproduct at position 148. Proc Natl Acad Sci USA 82: 7237–7241

    Article  PubMed  CAS  Google Scholar 

  • Chang MP, Baldwin RL, Bruce C, Wisnieski BJ (1989a) Second cytotoxic pathway of diphtheria toxin suggested by nuclease activity. Science 246:1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Chang MP, Bramhall J, Graves S, Bonavida B, Wisnieski BJ (1989b) Internucleosomal DNA cleavage precedes diphtheria toxin-induced cytolysis: evidence that cell lysis is not a simple consequence of translation inhibition. J Biol Chem 264: 15261–15267

    PubMed  CAS  Google Scholar 

  • Chung DW, Collier RJ (1977a) Enzymatically active peptide from the adenosine diphosphate-ribosylating toxin ofPseudomonas aeruginosa. Infect Immun 16: 832–841

    PubMed  CAS  Google Scholar 

  • Chung DW, Collier RJ (1977b) The mechanism of ADP-ribosylation of elongation factor 2 catalyzed by fragment A from diphtheria toxin. Biochim Biophys Acta 483: 248–257

    PubMed  CAS  Google Scholar 

  • Cieplak W, Locht C, Mar VL, Burnette WN, Keith JM (1990) Photolabeling of mutant forms of the S1 subunit of pertussis toxin with NAD. Biochem J 268: 547–551

    PubMed  CAS  Google Scholar 

  • Cockle SA (1989) Identification of an active-site residue in subunit S1 of pertussis toxin by photocrosslinking to NAD. FEBS Lett 249: 329–332

    Article  PubMed  CAS  Google Scholar 

  • Collier RJ (1975) Diphtheria toxin: mode of action and structure. Bacteriol Rev 39: 54–85

    PubMed  CAS  Google Scholar 

  • Collier RJ (1982) Structure and activity of diphtheria toxin. In: Hayaishi O, Ueda K (eds) ADP-ribosylation reactions. Academic, New York, pp 575–592

    Google Scholar 

  • Collier RJ, Kandel J (1971) Structure and activity of diphtheria toxin. I. Thiol-dependent dissociation of a fraction of toxin into enzymically active and inactive fragments. J Biol Chem 246:1496–1503

    PubMed  CAS  Google Scholar 

  • Collier RJ, Westbrook EM, McKay DB, Eisenberg D (1982) X-ray grade crystals of diphtheria toxin. J Biol Chem 257: 5283–5285

    PubMed  CAS  Google Scholar 

  • Domenighini M, Montecucco C, Ripka WC, Rappuoli R (1991) Computer modeling of the NAD binding site of ADP-ribosylating toxins: common active site and possible mechanism of catalysis. Mol Microbiol (in press)

    Google Scholar 

  • Douglas CD, Collier RJ (1987) Exotoxin A of Pseudomonas aeruginosa: substitution of glutamic acid 553 with aspartic acid drastically reduces toxicity and enzymatic activity. J Bacteriol 169: 4967–4971

    PubMed  CAS  Google Scholar 

  • Douglas CM, Collier RJ (1990) Pseudomonas aeruginosa exotoxin A: alterations of biological and biochemical properties resulting from mutation of glumatic acid 553 to aspartic acid. Biochemistry 29: 5043–5049

    Article  PubMed  CAS  Google Scholar 

  • Drazin R, Kandel J, Collier RJ (1971) Structure and activity of diphtheria toxin. II. Attack by trypsin at a specific site within the intact toxin molecule. J Biol Chem 246:1504–1510

    PubMed  CAS  Google Scholar 

  • Eidels L, Proia RL, Hart DA (1983) Membrane receptors for bacterial toxins. Microbiol Rev 47: 596–620

    PubMed  CAS  Google Scholar 

  • Gill DM (1988) Sequence homologies among the enzymically active portions of ADP-ribosylating toxins. In: Fehrenback FE, Alouf JE, Falmagne P, Goebel W, Jeljaszewicz J, Jurgens D, Rappuoli R (eds) Bacterial protein toxins, 3 European Workshop. Fischer, New York, pp 315–323

    Google Scholar 

  • Gill DM, Pappenheirper AM Jr (1971) Structure-activity relationships in diphtheria toxin. J Biol Chem 246: 1492–1495

    PubMed  CAS  Google Scholar 

  • Gill DM, Pappenheimer AM Jr, Brown R, Kurnick JT (1969) Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts. J Exp Med 129:1–21

    Article  PubMed  CAS  Google Scholar 

  • Gray GL, Smith DH, Baldridge JS, Harkins RN, Vasil ML, Chen EY, Heyneker HL (1984) Cloning, nucleotide sequence, and expression inEscherichia coli of the exotoxin A structural gene of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 81: 2645–2649

    Article  PubMed  CAS  Google Scholar 

  • Greenfield L, Björn MJ, Horn G, Fong D, Buck GA, Collier RJ, Kaplan DA (1983) Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc Natl Acad Sci USA 80: 6853–6857

    Article  PubMed  CAS  Google Scholar 

  • Honjo T, Nishizuka Y, Hayaishi O (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243: 3553–3555

    PubMed  CAS  Google Scholar 

  • Honjo T, Nishizuka Y, Hayaishi O (1969) Adenosine diphosphoribosylation of aminoacyl transferase II by diphtheria toxin. Cold Spring Harbor Symp Quant Biol 34: 603–608

    PubMed  CAS  Google Scholar 

  • Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonasaeruginosa toxin. Proc Natl Acad Sci USA 72: 2284–2288

    Article  PubMed  CAS  Google Scholar 

  • Iglewski BH, Liu PV, Kabat D (1977) Mechanism of action of Pseudomonas aeruginosa exotoxin A: adenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect Immun 15:138–144

    PubMed  CAS  Google Scholar 

  • Jacobson MK, Jacobson EL (eds) (1989) ADP-ribose transfer reactions. Mechanisms and biological significance. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Johnson VG (1990) Does diphtheria toxin have nuclease activity? Science 250: 832–838

    Article  CAS  Google Scholar 

  • Kandel J, Collier RJ, Chung DW (1974) Interaction of fragment A from diphtheria toxin with nicotinamide adenine dinucleotide. J Biol Chem 249: 2088–2097

    PubMed  CAS  Google Scholar 

  • Kantardjieff K, Dijkstra B, Westbrook EM, Barbieri JT, Carroll SF, Collier RJ, Eisenberg D (1987) Structural studies of diphtheria toxin. In: Oxender D (ed) Protein structure, folding, and design 2. Liss, New York, pp187–200

    Google Scholar 

  • Kantardjieff K, Collier RJ, Eisenberg D (1989) X-ray grade crystals of the er.zymatic fragment of diphtheria toxin. J Biol Chem 264:10402–10404

    PubMed  CAS  Google Scholar 

  • Leppla SH, Martin OC, Muehl LA (1978) The exotoxin of P. aeruginosa: a proenzyme having an unusual mode of activation. Biochem Biophys Res Commun 81: 532–538

    Article  PubMed  CAS  Google Scholar 

  • Lessnick SL, Bruce C, Baldwin RL, Chang MP, Nakamura LT, Wisnieski BJ (1990) Does diphtheria toxin have nuclease activity? Science 250: 832–838

    Article  Google Scholar 

  • Lory S, Collier RJ (1980) Expression of enzymic activity by exotoxin A from Pseudomonas aeruginosa. Infect Immun 28: 494–501

    CAS  Google Scholar 

  • Lory S, Carroll SF, Bernard PD, Collier RJ (1980) Ligand interactions of diphtheria toxin. I. Binding and hydrolysis of NAD. J Biol Chem 255:12011–12015

    PubMed  CAS  Google Scholar 

  • Lukac M, Collier RJ (1988a) Pseudomonas aeruginosa exotoxin A: effects of mutating tyrosine-470 and tyrosine-481 to phenylalanine. Biochemistry 27: 7629–7632

    Article  PubMed  CAS  Google Scholar 

  • Lukac M, Collier RJ (1988b) Restoration of enzymic activity and cytotoxicity of mutant, E553C, Pseudomonas aeruginosa exotoxin A by reaction with iodoacetic acid. J Biol Chem 263: 6146–6149

    PubMed  CAS  Google Scholar 

  • Lukac M, Pier GB, Collier RJ (1988) Toxoid ofPseudomonas aeruginosa exotoxin A generated by deletion of ah active-site residue. Infect Immun 56: 3095–3098

    PubMed  CAS  Google Scholar 

  • McKeever B, Sarma R (1982) Preliminary crystallographic investigation of the protein toxin from Corynebacterium diphtheriae. J Biol Chem 257: 6923–6925

    PubMed  CAS  Google Scholar 

  • Middlebrook JL, Dorland RB (1977a) Differential chemical protection of mammalian cells from the exotoxins of Corynebacterium diphtheriae and Pseudomonas aeruginosa. Infect Immun 16: 232–239

    PubMed  CAS  Google Scholar 

  • Middlebrook JL, Dorland RB (1977b) Response of cultured mammalian cells to the exotoxins of Pseudomonas aeruginosa and Corynebacterium diphtheriae: differential cytotoxicity. Can J Microbiol 23: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1990) ADP-ribosylating toxins and G proteins. Insights into signal transduction. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Nakamura LT, Wisnieski BJ (1990) Characterization of the deoxyribonuclease activity of diphtheria toxin. J Biol Chem 265: 5237–5241

    PubMed  CAS  Google Scholar 

  • Oppenheimer NJ, Bodley JW (1981) Diphtheria toxin: site and configuration of ADP-ribosylation ’diphthamide’ in elongation factor 2. J Biol Chem 256: 8579–8581

    PubMed  CAS  Google Scholar 

  • Papini E, Schiavo G, Sandona D, Rappuoli R, Montecucco C (1989) Histidine 21 is at the NAD binding site of diphtheria toxin. J Biol chem 264:12385–12388

    PubMed  CAS  Google Scholar 

  • Papini E, Santucci A, Schiavo G, Domenighini M, Neri P, Rappuoli R, Montecucco C (1991) Tyrosine 65 is photolabeled by 8-azidoadenine and 8-azidoadenosine at the NAD binding site of diphtheria toxin. J Biol Chem 266: 2494–2498

    PubMed  CAS  Google Scholar 

  • Pappenheimer AM Jr (1977) Diphtheria toxin. Annu Rev Biochem 46: 69–94

    Article  PubMed  CAS  Google Scholar 

  • Pizza M, Bartoloni A, Prugnola A, Silvestri S, Rappuoli R (1988) Subunit S1 of pertussis toxin: mapping of the regions essential for ADP-ribosyltransferase activity. Proc Natl Acad Sci USA 85: 7521–7525

    Article  PubMed  CAS  Google Scholar 

  • Sadoff JC, Buck GA, Iglewski BH, Bjom MJ, Groman NB (1982) Immunological cross-reactivity in the absence of DNA homology between Pseudomonas toxin A and diphtheria toxin. Infect Immun 37: 250–254

    PubMed  CAS  Google Scholar 

  • Tweten RK, Barbieri JT, Collier RJ (1985) Diphtheria toxin: effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity. J Biol Chem 260:10392–10394

    PubMed  CAS  Google Scholar 

  • Van Ness BG, Howard JB, Bodley JW (1980a) ADP-ribosylation of elongation factor 2 by diphtheria toxin: isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J Biol Chem 255:10717–10720

    PubMed  Google Scholar 

  • Van Ness BG, Howard JB, Bodley JW (1980b) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ’ribosyl-diphthamide’ and its hydrolysis products. J Biol Chem 255: 10710–10716

    PubMed  Google Scholar 

  • Vasil ML, Iglewski BH (1978) Comparative toxicities of diphtheria toxin and Pseudomonas aeruginosa exotoxin A: evidence for different cell receptors. J Gen Microbiol 108: 333–337

    PubMed  CAS  Google Scholar 

  • Vasill ML, Iglewski BH (1978) Comparative toxicities of diphtheria toxin and Pseudomonas aeruginosa. Infect Immun 16: 353–361

    Google Scholar 

  • Wilson BA, Blanke SR, Murphy JR, Pappenheimer AM Jr, Collier RJ (1990a) Does diphtheria toxin have nuclease activity? Science 250: 832–838

    Article  Google Scholar 

  • Wilson BA, Reich KA, Weinstein BR, Collier RJ (1990b) Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine. Biochemistry 29: 8643–8651

    Article  PubMed  CAS  Google Scholar 

  • Zhao JM, London E (1988) Localization of the active site of diphtheria toxin. Biochemistry 27: 3398–3403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Wilson, B.A., Collier, R.J. (1992). Diphtheria Toxin and Pseudomonas aeruginosa Exotoxin A: Active-Site Structure and Enzymic Mechanism. In: Aktories, K. (eds) ADP-Ribosylating Toxins. Current Topics in Microbiology and Immunology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76966-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76966-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76968-9

  • Online ISBN: 978-3-642-76966-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics