Skip to main content

Entry of ADP-Ribosylating Toxins into Cells

  • Chapter
ADP-Ribosylating Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 175))

Abstract

A number of bacterial toxins exert their action by ADP-ribosylating proteins essential for normal cellular function. In all cases known the substrate of these enzymes is either located free in the cytosol or associated with the cytoplasmic side of the plasma membrane. A key to understanding intoxication is therefore to understand how the toxins enter cells and get access to their cytoplasmic targets.

The authors were supported by the Norwegian Cancer Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322: 390–392

    Article  PubMed  CAS  Google Scholar 

  • Allured VS, Collier RJ, Carroll SF, Mckay DB (1986) Structure of exotoxin A of Pseudomonasaeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci USA 83:1320–1324

    Article  PubMed  CAS  Google Scholar 

  • Arai H, Sato Y (1976) Separation and characterization of two distinct hemagglutinins contained in purified leukosis-promoting factor from Bordetella pertussis. Biochim Biophys Acta 444: 765–782

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GD, Howard LA, Peppier MS (1988) Use of glycosyltransferases to restore pertussis toxin receptor activity to asialogalactofetuin. J Biol Chem 263: 8677–8684

    PubMed  CAS  Google Scholar 

  • Bennett V, Cuatrecasas P (1975) Mechanism of activation of adenylate cyclase by Vibrio cholera enterotoxin. J Membr Biol 222: 29–52

    Google Scholar 

  • Blewitt MG, Zhao J-M, McKeever B, Sarma R, London E (1984) fluorescence characterization of the low pH-induced change in diphtheria toxin conformation: effect of salt. Biochem Biophys Res Commun 120: 286–290

    Article  PubMed  CAS  Google Scholar 

  • Blewitt MG, Chung LA, London E (1985a) Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Biochemistry 24: 5458–5464

    Article  PubMed  CAS  Google Scholar 

  • Blewitt MG, Chung LA, London E (1985b) Interaction of diphtheria toxin with model membranes. Biochemistry 24: 5458–5464

    Article  PubMed  CAS  Google Scholar 

  • Boquet P, Pappenheimer AM Jr (1976) Interaction of diptheria toxin with mammalian cell membranes. J Biol Chem 251: 5770–5778

    PubMed  CAS  Google Scholar 

  • Brennan MJ, David JL, Kenimer JG, Manclark CR (1988) Lectin-like binding of pertussis toxin to a 165-kilodalton Chinese hamster ovary cell glycoprotein. J Biol Chem 263: 4895–4899

    PubMed  CAS  Google Scholar 

  • Cabiaux V, Brasseur R, Wattiez R, Falmagne P, Ruysschaert J-M, Goormaghtigh E (1989) Secondary structure of diphtheria toxin and its fragments interacting with acidic liposomes studied by polarized infrared spectroscopy. J Biol Chem 264: 4928–4938

    PubMed  CAS  Google Scholar 

  • Carroll SF, Collier RJ (1988) Amino acid sequence homology between the enzymic domains of diphtheria toxin andPseudomonas aeruginosa exotoxin A. Mol Microbiol 4: 527–535

    Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75:2669–2673

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary VK, Jinno Y, FitzGerald D, Pastan I (1990)Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci USA 87: 308–312

    Article  PubMed  CAS  Google Scholar 

  • Chaudry GJ, Wilson RB, Draper RK, Clowes RC (1989) A dipeptide insertion in domain I of exotoxin A that impairs receptor binding. J Biol Chem 264:15151–15156

    PubMed  CAS  Google Scholar 

  • Cieplak W, Gaudin HM, Eidels L (1987) Diphtheria toxin receptor. Identification of specific diphtheria toxin-binding proteins on the surface of Vero and BS-C-1 cells. J Biol Chem 262:13246–13253

    PubMed  CAS  Google Scholar 

  • Collier RJ, Westbrook EM, McKay DB, Eisenberg D (1982) X-ray grade crystals of diphtheria toxin. J Biol Chem 257: 5283–5285

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P (1977) Interaction of Vibrio cholerae enterotoxin with cell membranes. Biochemistry 12: 3547–3558

    Article  Google Scholar 

  • Dallas WS, Falkow S (1980) Amino acid sequence homology between cholera toxin and Escherichia coli heat-labile toxin. Nature 288: 499–501

    Article  PubMed  CAS  Google Scholar 

  • De Wolf MJS, Fridkin M, Kohn LD (1981) Tryptophan residues of cholera toxin and its A and B protomers. Intrinsic fluorescence and solute quenching upon interacting with the ganglioside GMj, oligo-GMj, or dansylated oligo-GMi. J Biol Chem 256: 5489–5496

    PubMed  Google Scholar 

  • Donovan JJ, Simon Ml, Draper RK, Montal M (1981) Diphtheriatoxin forms transmembrane channels in planar lipid bilayers. Proc Natl Acad Sci USA 78:172–176

    Article  PubMed  CAS  Google Scholar 

  • Donovan JJ, Simon Ml, Montal M (1985) Requirements for the translocation of diphtheria toxin fragment A across lipid membranes. J Biol Chem 260: 8817–8823

    PubMed  CAS  Google Scholar 

  • Draper RK, Simon Ml (1980) The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement. J Cell Biol 87: 849–854

    Article  PubMed  CAS  Google Scholar 

  • Drazin R, Kandel J, Collier RJ (1971) Structure and activity of diphtheria toxin. II. Attack by trypsin at a specific site within the intact toxin molecule. J Biol Chem 246:1504–1510

    PubMed  CAS  Google Scholar 

  • Duffy LK, Lai CY (1979) Involvement of arginine residues in the binding of cholera toxin subunit B. Biochem Biophys Res Commun 91:1005–1010

    Article  PubMed  CAS  Google Scholar 

  • Dumont ME, Richards FM (1988) The pH-dependent conformational change of diphtheria toxin. J Biol Chem 263: 2087–2097

    PubMed  CAS  Google Scholar 

  • Dwyer JD, Bloomfield VA (1982) Subunit arrangement of cholera toxin in solution and bound to receptor-containing model membranes. Biochemistry 21: 3227–3231

    Article  PubMed  CAS  Google Scholar 

  • Eidels L, Proia RL, Hart DA (1983) Membrane receptors for bacterial toxins. Microbiol Rev 47: 596–620

    PubMed  CAS  Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142

    Article  PubMed  CAS  Google Scholar 

  • Farahbakhsh ZT, Baldwin RL, Wisnieski BJ (1986) Pseudomonas exotoxin A. Membrane binding, insertion, and traversal. J Biol Chem 261:11404–11408

    PubMed  CAS  Google Scholar 

  • Faratibakhsh ZT, Baldwin RL, Wisnieski BJ (1987) Effect of low pH on the conformation of Pseudomonas exotoxin A. J Biol Chem 262: 2256–2261

    Google Scholar 

  • Farfel Z, Kaslow HR, Bourne HR (1979) A regulatory component of adenylate cyclase is located on the inner surface of human erythrocyte membranes. Biochem Biophys Res Commun 90: 1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RA (1973) Cholera. Crit Rev Microbiol 2: 553–623

    Article  CAS  Google Scholar 

  • Finkelstein RA, Burks MF, Zupan A, Dallas WS, Jacob CO, Ludwig DS (1987) Antigenic determinants of the cholera/coli family of enterotoxins. Rev Infect Dis 9: S490-S502

    Article  PubMed  CAS  Google Scholar 

  • Fishman PH (1980) Mechanism of action of cholera toxin: studies on the lag period. J Membr Biol 54:61–72

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald D, Morris RE, Saelinger CB (1980) Receptor-mediated internalization of Pseudomonas toxin by mouse fibroblasts. Cell 21: 867–873

    Article  CAS  Google Scholar 

  • Fukuta S, Magnani JL, Twiddy EM, Holmes RK, Ginsburg V (1988) Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-l, LT-lla, and LT-llb. Infect Immun 56: 1748–1753

    PubMed  CAS  Google Scholar 

  • Geary S, Marchlewics BA, Finkelstein RA (1982) Comparisons of heat-labile enterotoxins from porcine and human strains of Escherichia coli. Infect Immun 36: 215–220

    PubMed  CAS  Google Scholar 

  • Gill DM (1976a) The arrangement of subunits in cholera toxin. Biochemistry 15:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Gill DM (1976b) Multiple roles of erythrocyte supernatant in the activation of adenylate cyclase by Vibrio cholerae toxin in vitro. J Infect Dis 133: S55-S63

    Article  Google Scholar 

  • Gill DM (1977) Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res 8: 85–118

    PubMed  CAS  Google Scholar 

  • Gill DM, King CA (1975) The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J Biol Chem 250: 6424–6432

    PubMed  CAS  Google Scholar 

  • Gill DM, Clements JD, Robertson DC, Finkelstein RA (1981) Subunit number and arrangement in Escherichia coli heat-labile enterotoxin. Infect Immun 33: 677–682

    PubMed  CAS  Google Scholar 

  • Gill DM, Meren R (1978) ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci USA 75: 3050–3054

    Article  PubMed  CAS  Google Scholar 

  • Gray BL, Smith DH, Baldridge JS, Harkins RN, Vasil ML, Chen EY, Heyneker HL (1984) Cloning, nucleotide sequence, and expression inEscherichia coli of the exotoxin A structural gene of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 81: 2645–2649

    Article  PubMed  CAS  Google Scholar 

  • Greenfield L, Björn MJ, Horn G, Fong D, Buck GA, Collier RJ, Kaplan DA (1983) Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc Natl. Acad Sci USA 80: 6853–6857

    Article  PubMed  CAS  Google Scholar 

  • Griffiths SI, Finkelstein RA, Critchley DR (1986) Characterization of the receptor for cholera toxin and Escherichia coli heat-labile toxin in rabbit intestinal brush borders. Biochem J 238: 313–322

    PubMed  CAS  Google Scholar 

  • Guidi-Rontani C, Collier RJ (1987) Exotoxin A of Pseudomonas aeruginosa: evidence that domain I functions in receptor binding. Mol Microbiol 1: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Holmgren J (1973) Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect Immun 8: 208–214

    PubMed  CAS  Google Scholar 

  • Holmgren J (1981) Actions of cholera toxin and the prevention and treatment of cholera. Nature 292:413–417

    Article  PubMed  CAS  Google Scholar 

  • Holmgren J, Fredman P, Lindblad M, Svennerholm A-M, Svennerholm L (1982) Rabbit intestinal glycoprotein receptor forEscherichia coli heat-labile enterotoxin lacking affinity for cholera toxin. Infect Immun 38: 424–433

    PubMed  CAS  Google Scholar 

  • Holmgren J, Lindblad M, Fredman P, Svennerholm L, Myrvold H (1985) Comparison of receptors for cholera and Escherichia coli enterotoxins in human intestine. Gastroenterology 89: 27–35

    PubMed  CAS  Google Scholar 

  • Honda T, Tsuji T, Takeda Y, Miwatani T (1981) Immunological nonidentity of heat-labile enterotoxins from human and porcine enterotoxigenic Escherichia coli. Infect Immun 34: 337–340

    PubMed  CAS  Google Scholar 

  • Honjo T, Nishizuka Y, HAyaishi O, Kato I (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243: 3553–3555

    PubMed  CAS  Google Scholar 

  • Hu VW, Holmes RK (1984) Evidence for direct insertion of fragments A and B of diphtheria toxin into model membranes J Biol Chem 259: 12226–12233

    CAS  Google Scholar 

  • Hudson TH, Scharff J, Kimak MAG, Neville DM Jr (1988) Energy requirements for diphtheria toxin translocation are coupled to the maintenance of a plasma membrane potential and a proton gradient. J Biol Chem 263: 4773–4781

    PubMed  CAS  Google Scholar 

  • Hwang J, Fitzgerald DJ, Adhya S, Pastan I (1987) Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E coli. Cell 48:129–136

    Article  PubMed  CAS  Google Scholar 

  • Idziorek T, FitzGerald D, Pastan I (1990) Low pH-induced changes inPseudomonas exotoxin and its domains: increased binding of triton X-114. Infect Immun 58:1415–1420

    PubMed  CAS  Google Scholar 

  • Iglewski BH, Sadoff JC (1979) Toxin inhibitors of protein synthesis: production, purification, and assay ofPseudomonas aeruginosa toxin A. Methods Enzymol 60: 780–793

    Article  PubMed  CAS  Google Scholar 

  • Iida T, Tsuji T, Honda T, Miwatani T, Wakabayashi S, Wada K, Matsubara H (1989) A single amino acid substitution in B subunit ofEscherichia coli enterotoxin affects its oligomer formation. J Biol Chem 264:14065–14070

    PubMed  CAS  Google Scholar 

  • Irons LI, MacLennan AP (1979) Isolation of the lymphocytosis promoting factor-haemagglutinin of Bordetella pertussis by affinity chromatography. Biochim Biophys Acta 580:175–185

    PubMed  CAS  Google Scholar 

  • Ittelson TR, Gill DM (1973) Diphtheria toxin: specific competition for receptors. Nature 242: 330–331

    Article  PubMed  CAS  Google Scholar 

  • Jacob CO, Sela M, Arnon R (1983) Antibodies against synthetic peptides of the B subunit of cholera toxin: crossreaction and neutralization of the toxin. Proc Natl Acad Sci USA 80: 7611–7615

    Article  PubMed  CAS  Google Scholar 

  • Jacob CO, Pines M, Arnon R (1984) Neutralization of heat-labile toxin of E-coli by antibodies to synthetic peptides derived from the B subunit of cholera toxin. EMBO J 3: 2889–2893

    PubMed  CAS  Google Scholar 

  • Janicot M, Fouque F, Des Buquois B (1991) Activation of rat liver adenylate cyclase by cholera toxin requires toxin internalization and processing in endosomes. J Biol Chem 266: 12858–12865

    PubMed  CAS  Google Scholar 

  • Jiang JX, London E (1990) Involvement of denaturation-like changes in Pseudomonas exotoxin A hydrophobicity and membrane penetration determined by characterization pH and thermal transitions. J Biol Chem 265: 8636–8641

    PubMed  CAS  Google Scholar 

  • Jinno Y, Chaudhary VK, Kondo T, Adhya S, FitzGerald DJ, Pastan I (1988) Mutational analysis of domain I of Pseudomonas exotoxin. Mutations in domain I of Pseudomonas exotoxin which reduce ceil binding and animal toxicity. J Biol Chem 263:13203–13207

    PubMed  CAS  Google Scholar 

  • Joseph KC, Kim Su, Stieber A, Gonatas NK (1978) Endocytosis of cholera toxin into neuronal GERL. Proc Natl Acad Sci USA 75: 2815–2819

    Article  PubMed  CAS  Google Scholar 

  • Kagan B, Finkelstein A, Colombini M (1981) Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc Natl Acad Sci USA 78: 4950–4954

    Article  PubMed  CAS  Google Scholar 

  • Kassis S, Hagmann J, Fishman PH, Chang PP, Moss J (1982) Mechanism of action of cholera toxin on intact cells. Generation of A 1 peptide and activation of adenylate cyclase. J Biol Chem 257:12148–12152

    PubMed  CAS  Google Scholar 

  • Kim K, Groman NB (1965) In vitro inhibition of diphtheria toxin action by ammonium salts and amines. J Bacteriol 90:1552–1556

    PubMed  CAS  Google Scholar 

  • Kimberg DV, Field M, Johnson J, Henderson A, Gershon E (1971) Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. Clin Invest 50:1218–1231

    Article  CAS  Google Scholar 

  • Kohno K, Hayes H, Mekada E, Uchida T (1987) Mutant with diphtheria toxin receptor and acidification function but defective in entry of toxin. Exp Cell Res 172: 54–64

    Article  PubMed  CAS  Google Scholar 

  • Kurosky A, Markel De, Peterson JW (1977a) Covalent structure of the B chain of cholera enterotoxin. J Biol Chem 252: 7257–7264

    PubMed  CAS  Google Scholar 

  • Kursoky A, Markel DE, Peterson JW, Fitch WM (1977b) Primary structure of cholera toxin B-chain: a glycoprotein hormone analog? Science 195: 299–301

    Article  Google Scholar 

  • Lai C-Y (1977) Determination of the primary structure of cholera toxin B subunit. J Biol Chem 252: 7249–7256

    PubMed  CAS  Google Scholar 

  • Lai C-Y (1980) The chemistry and biology of cholera toxin. CRC Crit Rev Biochem 9:171–206

    Article  PubMed  CAS  Google Scholar 

  • Lambotte P, Falmagne P, Capiau C, Zanen J, Ruysschaert JM, Dirkx J (1980) Primary structure of diphtheria toxin fragment B: structural similarities with lipid-binding domains. J Cell Biol 87: 837–840

    Article  PubMed  CAS  Google Scholar 

  • Leong J, Vinal AC, Dallas WS (1985) Nucleotide sequences comparison between heat-labile toxin B-subunit cistrons from Escherichia coli of human and porcine origin. Infect Immun 48: 73–77

    PubMed  CAS  Google Scholar 

  • Leppla SH, Dorland RB, Middlebrook JL (1980) Inhibition of diphtheria toxin degradation and cytotoxic action by chloroquine. J Biol Chem 255: 2247–2250

    PubMed  CAS  Google Scholar 

  • Locht C, Keith JM (1986) Pertussis toxin gene: nucleotide sequence and genetic organization. Science 232: 1258–1264

    Article  PubMed  CAS  Google Scholar 

  • Lockman H, Kaper JB (1983) Nucleotide sequence analysis of the A2 and B subunits of Vibrio cholerae enterotoxin. J Biol Chem 258:13722–13726

    PubMed  CAS  Google Scholar 

  • Ludwig DS, Holmes RK, Schoolnik GK (1985) Chemical and immunochemical studies on the receptor binding domain of cholera toxin B subunit. J Biol Chem 260:12528–12534

    PubMed  CAS  Google Scholar 

  • Madshus IH, Collier RJ (1989) Effects of eliminating a disulfide bridge within domain II of Pseudomonas aeruginosa exotoxin A. Infect Immun 57: 1873–1878

    PubMed  CAS  Google Scholar 

  • Manhart MD, Morris RE, Bonventre PF, Leppla S, Saelinger CB (1984) Evidence for Pseudomonas exotoxin A receptors on plasma membrane of toxin-sensitive LM fibroblasts. Infect Immun 45: 596–603

    PubMed  CAS  Google Scholar 

  • Marnell MH, Stookey M, Draper RK (1982) Monensin blocks the transport of diphtheria toxin to the cell cytoplasm. J Cell Biol 93: 57–62

    Article  PubMed  CAS  Google Scholar 

  • Marnell MH, Mathis LS, Stookey M, Shia SP, Stone DK, Draper RK (1984a) A Chinese hamster ovary cell mutant with heat-sensitive conditional-lethal defect in vacuolar function. J Cell Biol 99: 1907–1916

    Article  PubMed  CAS  Google Scholar 

  • Marnell MH, Shia SP, Stookey M, Draper RK (1984b) Evidence for penetration of diphtheria toxin to the eytosol through a prelysosomal membrane. Infect Immun 44:145–150

    PubMed  CAS  Google Scholar 

  • Maulik PR, Reed RA, Shipley GG (1988) Crystallization and preliminary X-ray diffraction study of cholera toxin B-subunit. J Biol Chem 263: 9499–9501

    PubMed  CAS  Google Scholar 

  • McGill S, Stenmark H, Sandvig K, Olsnes S (1989) Membrane interactions of diphtheria toxin analyzed using in vitro translated mutants. EMBO J 8: 2843–2848

    PubMed  CAS  Google Scholar 

  • Mekada E, Uchida T (1985) Binding properties of diphtheria toxin to cells are altered by mutation in the fragment A domain. J Biol Chem 260:12148–12153

    PubMed  CAS  Google Scholar 

  • Mekada E, Uchida T, Okada Y (1981) Methylamine stimulates the action of ricin toxin but inhibits that of diphtheria toxin. J Biol Chem 256:1225–1228

    PubMed  CAS  Google Scholar 

  • Mekada E, Okada Y, Uchida T (1988) Identification of diphtheria toxin receptor and a nonproteinous diphtheria toxin-binding molecule in Vero cell membrane. J Cell Biol 107: 511–519

    Article  PubMed  CAS  Google Scholar 

  • Mekalanos JJ, Collier RJ, Romig WR (1979) Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 254: 5855–5861

    PubMed  CAS  Google Scholar 

  • Mekalanos JJ, Swartz DJ, Pearson GDN, Harford N, Groyne F, de Wilde M (1983) Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306: 551–557

    Article  PubMed  CAS  Google Scholar 

  • Merion M, Schlesinger P, Brooks RM, Moehring JM, Moehring TJ, Sly WS (1983) Defective acidification of endosomes in Chinese hamster ovary cell mutants “cross-resistant” to toxins and Viruses. Proc Natl Acad Sci USA 80: 5315–5319

    Article  PubMed  CAS  Google Scholar 

  • Middlebrook JL, Doorland RB (1984) Bacterial toxins: cellular mechanisms of action. Microbiol Rev 48: 199–221

    PubMed  CAS  Google Scholar 

  • Middlebrook JL, Doorland RB, Leppla SH (1978) Association of diphtheria toxin with Vero cells: demonstration of a receptor. J Biol Chem 253: 7325–7330

    PubMed  CAS  Google Scholar 

  • Moehring, TJ, Crispell JB (1974) Enzyme treatment of KB cells: the altered effect of diphtheria toxin. Biochem BiophysRes Commun 60: 1446–1452

    Article  PubMed  CAS  Google Scholar 

  • Montecucco C, Schiavo G, Tomasi M (1985) pH-dependence of the phospholipid interaction of diphtheria toxin fragments. Biochem J 231:123–128

    Google Scholar 

  • Montecucoo C, Tomasi M, Schiavo G, Rappuoli R (1986) Hydrophobic photolabelling of pertussis toxin subunits interacting with lipids. FEBS Lett 194: 301–304

    Article  Google Scholar 

  • Montesano R, Roth J, Robert A, Orci L (1982) Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296: 651–653

    Article  PubMed  CAS  Google Scholar 

  • Morris RE, Saelinger CB (1986) Reduced temperature alters Pseudomonas exotoxin A entry into the mouse LM cell. Infect Immun 52: 445–453

    PubMed  CAS  Google Scholar 

  • Morris RE, Manhart MD, Saelinger CB (1983) Receptor-mediated entry of Pseudomonas toxin: methylamine blocks clustering step. Infect Immun 40: 806–811

    PubMed  CAS  Google Scholar 

  • Morris RE, Gerstein AS, Bonventre PF, Saelinger CB (1985) Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells: electron microscopic evaluation. Infect Immun 50: 721–727

    PubMed  CAS  Google Scholar 

  • Moskaug JØ, Sandvig K, Olsnes S (1987) Cell-mediated reduction of the interfragment disulfide in nicked diphtheria toxin. A new system to study toxin entry at low pH. J Biol Chem 262: 10339–10345

    PubMed  CAS  Google Scholar 

  • Moskaug JØ, Sandvig K, Olsnes S (1988) Low pH-induced release of diphtheria toxin A-fragment in Vero cells. Biochemical evidence for transfer to the eytosol. J Biol Chem 263: 2518–2525

    PubMed  CAS  Google Scholar 

  • Moskaug JØ, Stenmark H, Olsnes S (1991) Insertion of diphtheria toxin B-fragment into the plasma membrane at low pH. Characterization and topology of inserted regions. J Biol Chem 266: 2652–2659

    PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1977) Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252: 2455–2457

    PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1988) ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enzymol 61: 303–379

    PubMed  CAS  Google Scholar 

  • Moss J, Stanley SJ, Morin JE, Dixon JE (1980) Activation of choleragen by thiol: protein disulfide oxidoreductase. J Biol Chem 255: 11085–11087

    PubMed  CAS  Google Scholar 

  • Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P (1985) Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol 101: 548–559

    Article  PubMed  CAS  Google Scholar 

  • Moynihan MR, Pappenheimer AM Jr (1991) Kinetics of adenosine-diphosphorylation of elongation factor 2 in cells exposed to diphtheria toxin. Infect Immun 32: 575–582

    Google Scholar 

  • Mullin BR, Aloj SM, Fishman PH, Lee G, Kohn LD (1976) Cholera toxin interactions with thyrotropin receptors on thyroid plasma membranes. Proc Natl Acad Sci USA 73:1679–1683

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Pelham RB (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48: 899–907

    Article  PubMed  CAS  Google Scholar 

  • Murphy JR, Bishai W, Borowski M, Miyanohara A, Boyd J, Nagle S (1986) Genetic construction, expression, and melanoma-selective cytotoxity of a diphtheria toxin-related a-melanocyte-stimulating hormone fusion protein. Proc Natl Acad Sci USA 83: 8258–8262

    Article  PubMed  CAS  Google Scholar 

  • Nicosia A, Perugini M, Franzini C, Casagli MC, Borri MG, Antoni G, Almoni M, Neri P, Ratti G, Rappuoli R (1986) Cloning and sequencing of the pertussis toxin genes: Operon structure and gene duplication. Proc Natl Acad Sci USA 83: 4631–4635

    Article  PubMed  CAS  Google Scholar 

  • Ohishi I (1987) Activation of botulinum C2 toxin by trypsin. Infect Immun 55:1461–1465

    PubMed  CAS  Google Scholar 

  • Ohishi I, Miyake M (1985) Binding of the two components of C2 toxin to epithelial cells and brush borders of mouse intestine. Infect Immun 48: 769–775

    PubMed  CAS  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30: 668–673

    PubMed  CAS  Google Scholar 

  • O’Keefe DO, Collier RJ (1989) Cloned diphtheria toxin within the periplasm of Escherichia coli causes lethal membrane damage at low pH. Proc Natl Acad Sci USA 86: 343–346

    Article  PubMed  Google Scholar 

  • Olsnes S, Carvajal E, Sundan A, Sandvig K (1985) Evidence that membrane phospholipids and protein are required for binding of diphtheria toxin in Vero cells. Biochim Biophys Acta 846: 334–341

    Article  PubMed  CAS  Google Scholar 

  • Olsnes S, Carvajal E, Sandvig K (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells. III. Effect on toxin binding and anion transport of tumor-promoting phorbol esters, vanadate, fluoride, and salicylate. J Biol Chem 261:1562–1569

    PubMed  CAS  Google Scholar 

  • Papini E, Schiavo G, Tomasi M, Colombatti M, Rappuoli R, Montecucco C (1987) Lipid interactions of diphtheria toxin and mutants with altered fragment B. II. Hydrophobic photolabelling and cell intoxication. Eur J Biochem 169: 637–644

    Article  PubMed  CAS  Google Scholar 

  • Papini E, Sandona D, Rappuoli R, Montecucco C (1988) On the membrane translocation of diphtheria toxin: at low pH the toxin induces ion channels on cells. EMBO J 7(11): 3353–3359

    PubMed  CAS  Google Scholar 

  • Patzer EJ, Wagner RR, Dubovi EJ (1979) Viral membranes: model systems for studying biological membranes. CRC Crit Rev Biochem 8:165–217

    Article  Google Scholar 

  • Pirker R, FitzGerald DJP, Hamilton TC, Ozols RF, Willingham MC, Pastan I (1985) Anti-transferrin receptor antibody linked to Pseudomonas exotoxin as a model immunotoxin in human ovarian carcinoma cell lines. Cancer Res 45: 751–757

    PubMed  CAS  Google Scholar 

  • Proia RL, Hart DA, Holmes RK, Holmes KV, Eidels L (1979) Immunoprecipitation and partial characterization of diphtheria toxin-binding glycoproteins from surface of guinea pig cells. Proc natl Acad Sci USA 76: 685–689

    Article  PubMed  CAS  Google Scholar 

  • Ratti G, Rappuoli R, Giannini G (1983) The complete sequence of the gene for diphtheria toxin in the corynephage omega (tox +) genome. Nucleic Acids Res 11: 6589–6595

    Article  PubMed  CAS  Google Scholar 

  • Ribi Ho, Ludwig DS, Mercer KL, Schoolnik GK, Kornberg RD (1988) Three-dimensional structure of cholera toxin penetrating a lipid membrane. Science 239:1272–1276

    Article  PubMed  CAS  Google Scholar 

  • Robbins AR, Peng SS, Marshall JL (1983) Mutant Chinese hamster ovary cells pleiotropically defective in receptor-mediated endocytosis. J Cell Biol 96:1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Robbins AR, Oliver C, Bateman JL, Krag SS, Galloway CJ, Mellman I (1984) A single mutation in Chinese hamster ovary cells impairs both golgi and endosomal functions. J Cell Biol 99: 1296–1308

    Article  PubMed  CAS  Google Scholar 

  • Robles CP, Hart DA, Eidels L (1982) Diphtheria toxin-binding cell surface glycoproteins. Fed Proc 41: 1392

    Google Scholar 

  • Robles CP, Hart DA, Eidels L (1983) Diphtheria toxin-binding glycoproteins on the surface of cells in culture. Fed Proc 42:1809

    Google Scholar 

  • Roff CF, Fuchs R, Mellman I, Robbins AR (1986) Chinese hamster ovary cell mutants with temperature-sensitive defects in endocytosis. I. Loss of function on shifting to the nonpermissive temperature. J Cell Biol 103: 2283–2297

    Article  PubMed  CAS  Google Scholar 

  • Rolf JM, Gaudin HM, Tirrell SM, MacDonald AB, Eidels L (1989) Anti-idiotypic antibodies that protect cells against the action of diphtheria toxin. Proc Natl Acad Sci USA 86: 2036–2039

    Article  PubMed  CAS  Google Scholar 

  • Rolf JM, Gaudin HM, Eidels L (1990) Localization of the diphtheria toxin receptor-binding domain to the carboxyl-terminal Mr~ 6000 region of the toxin. J Biol Chem 265: 7331–7337

    PubMed  CAS  Google Scholar 

  • Sandvig K, Moskaug JØ (1987) Pseuodomonas toxin binds Triton X-114 at low pH. Biochem J 245: 899–901

    PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S (1980) Diphtheria toxin entry into cells is facilitated by low pH. J Cell Biol 87: 828–832

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S (1981) Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effect of low pH on the toxin molecule. J Biol Chem 256: 9068–9076

    PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S (1984) Anion requirements and effect of anion transport inhibitors on the response of Vero cells to diphtheria toxin and modeccin. J Cell Physiol 119: 7–14

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S, (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells. IV. Evidence that entry of diphtheria toxin is dependent on efficient anion transport. J Biol Chem 261: 1570–1575

    PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S (1988) Diphtheria toxin-induced channels in Vero cells selective for monovalent cations. J Biol Chem 263:12352–12359

    PubMed  CAS  Google Scholar 

  • Sandvig K, Olsnes S (1991) Membrane translocation of diphtheria toxin. In: Alouf JE, Freer JH (eds) Sourcebook of bacterial protein toxins. Academic Press Limited, London, UK, pp 57–73

    Google Scholar 

  • Sandvig K, Sundan A, Olsnes S (1984) Evidence that diphtheria toxin and modeccin enter the eytosol from different vesicular compartments. J Cell Biol 98: 963–970

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, Tønnessen Tl, Sand O, Olsnes S (1986) Requirement of a transmembrane pH gradient for the entry of diphtheria toxin into cells at low pH. J Biol Chem 261:11639–11644

    PubMed  CAS  Google Scholar 

  • Schaefer EM, Moehring JM, Moehring TJ (1988) Binding of diphtheria toxin to CHO-KI and Vero cells is dependent on cell density. J Cell Physiol 135: 407–415

    Article  PubMed  CAS  Google Scholar 

  • Sekura RD, Fish F, Manclark CR, Meade B, Zhang Y (1983) Pertussis toxin. Affinity purification of a new ADP-ribosyltransferase. J Biol Chem 258:14647–14651

    PubMed  CAS  Google Scholar 

  • Siegall CB, Chaudhary VK, FitzGerald DJ, Pastan I (1989) Functional analysis of domains II, lb, and III ofPseudomonas exotoxin. J Biol Chem 264: 14256–14261

    PubMed  CAS  Google Scholar 

  • Sigler PB, Druyan ME, Kiefer HC, Finkelstein RA (1977) Cholera toxin crystals suitable for X-ray diffraction. Science 197:1277–1279

    Article  PubMed  CAS  Google Scholar 

  • Simpson LI (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251: 1223–1228

    PubMed  CAS  Google Scholar 

  • Sixma TK, Pronk SE, Kalk KH, Wartna ES, Van Zanten BAM, Witholt B, Hoi WGJ (1991) Crystal structure of cholera toxin related heat labile enterotoxin from E. coli. Nature 351: 371–377

    CAS  Google Scholar 

  • Stenmark H, McGill S, Olsnes S, Sandvig K (1989) Plasma membrane permeabilization by deletion mutants of diphtheria toxin. EMBO J 8: 2849–2853

    PubMed  CAS  Google Scholar 

  • Sundan A, Sandvig K, Olsnes S (1984) Calmodulin antagonists sensitize cells to Pseudomonas toxin. J Cell Physiol 119:15–22

    Article  PubMed  CAS  Google Scholar 

  • Svennefholm A-M, Holmgren J (1978) Identification of Escherichia coli heat-labile enterotoxin by means of a ganglioside immunosorbent assay (GMr ELISA) procedure. Curr Microbiol 1:19–23

    Article  Google Scholar 

  • Takao T, Watanabe H, Shimonishi Y (1985) Facile identification of protein sequences by mass spectrometry. B subunit ofVibrio cholerae classical biotype Inaba 569 B toxin. Eur J Biochem 146: 503–508

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Nogimori K, Yajima M, Ito K, Katada T, Ui M, Ishii S (1982) Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21: 5516–5522

    Article  PubMed  CAS  Google Scholar 

  • Thompson MR, Forristal J, Kauffmann P, Madden T, Kozak K, Morris R, Saelinger CB (1991) Isolation and characterization of Pseudomonas aeruginosa exotoxin A binding glycoprotein from mouse LM cells. J Biol Chem 266: 2390–2396

    PubMed  CAS  Google Scholar 

  • Tomasi M, Montecucco C (1981) Lipid insertion of cholera toxin after binding to GMr containing lipsosomes. J Biol Chem 256: 11177–11181

    PubMed  CAS  Google Scholar 

  • Tomasi M, Battistini A, Ausiello C, Roda LG, d’Angolo GD (1978) The role of environmental parameters on the stability of cholera toxin functional regions. FEBS Lett 94: 253–256

    Article  PubMed  CAS  Google Scholar 

  • Tosteson MT, Tosteson DC (1978) Bilayers containing gangliosides develop channels when exposed to cholera toxin. Nature 275:142–144

    Article  PubMed  CAS  Google Scholar 

  • Tsuji T, Honda T, Miwatani T, Wakabayashi S, Matsubara H (1984) The amino acid sequence of the B-subunit: of porcine enterotoxigenic Escherichia colie nterotoxin-analysis and comparison with literature data. FEMS Microbiol Lett 25: 243–246

    CAS  Google Scholar 

  • Tsuji T, Honda T, Miwatani T, Wakabayashi S, Matsubara H (1985) Analysis of receptor-binding site in Escherichia coli enterotoxin. J Biol Chem 260: 8552–8558

    PubMed  CAS  Google Scholar 

  • Tsuji T, lida T, Honda T, Miwatani T, Nagahama M, Sakurai J, Wada K, Matsubara H (1987) A unique amino acid sequence of the B subunit of a heat-labile enterotoxin isolated from a human enterotoxigenic Escherichia coli. Microb Pathog 2: 381–390

    Article  PubMed  CAS  Google Scholar 

  • Uchida Pappenheimer AM Jr, Harper AA (1972) Reconstitution of diphtheria toxin from two nontoxic cross-reacting molecules. Science 175: 901–903

    Article  PubMed  CAS  Google Scholar 

  • Uchida T, Pappenheimer AM Jr, Greany R (1973) Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem 248: 3838–3844

    PubMed  CAS  Google Scholar 

  • Van Heynigen WE, Carpenter CCJ, Pierce NF, Greenough WB III (1971) Deactivation of cholera toxin by ganglioside. J Infect Dis 124: 415–418

    Article  Google Scholar 

  • Van Ness BG, Howard JB, Bodley JW (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J Biol Chem 255: 10710–10716

    PubMed  Google Scholar 

  • Wick MJ, Hammond AN, Iglewski BH (1990) MIcroReview. Analysis of the structure-function relationship of Pseudomonas aeruginosa exotoxin A. Mol Microbiol 4: 527–535

    Article  PubMed  CAS  Google Scholar 

  • Wisnieski BJ, Bramhall JS (1981) Photolabelling of cholera toxin subunits during membrane penetration. Nature 289: 319–321

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Yokota T (1983) Sequence of heat-labile enterotoxin of Escherichia coli pathogenic for humans. J Bacteriol 155: 728–733

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Gojobori T, Yokota T (1987) Evolutionary origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae 01. J Bacteriol 169:1352–1357

    PubMed  CAS  Google Scholar 

  • Zhao J-M, London E (1986) Similarity of the conformation of diphtheria toxin at high temperature to that in the membrane-penetrating low-pH state. Proc Natl Acad Sci USA 83: 2002–2006

    Article  PubMed  CAS  Google Scholar 

  • Zhao J-M, London E (1988) Conformation and model membrane interactions of diphtheria toxin, fragment A. J Biol Chem 263:15369–15377

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Madshus, I.H., Stenmark, H. (1992). Entry of ADP-Ribosylating Toxins into Cells. In: Aktories, K. (eds) ADP-Ribosylating Toxins. Current Topics in Microbiology and Immunology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76966-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76966-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76968-9

  • Online ISBN: 978-3-642-76966-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics