Predictability of Climate

  • Antonio Speranza
Conference paper
Part of the NATO ASI Series book series (volume 6)


The theoretical foundations of the problem of deterministic predictability are nowadays quite clear. Let us summarize the basic concept and definitions.


Strange Attractor Baroclinic Wave Positive Exponent Atmospheric Predictability Liapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benzi R, Malguzzi P, Speranza A and Sutera A (1986) The statistical properties of general atmospheric circulation: Observational evidence and a minimal theory of bimodality. Q J Roy Meteorol Soc 112: 661–674CrossRefGoogle Scholar
  2. Benzi R, Sutera A and Jona-Lasinio G (1988) Stochastically perturbede Landau-Ginzburg equations, (submitted to J Stat Phys)Google Scholar
  3. Buzzi A and Tosi E (1988) Low frequency variability of the atmospheric circulation: A comparison of statistical properties in both hemispheres and extreme seasons. Nuovo CimentoC 11: 467–488CrossRefGoogle Scholar
  4. Chamey JG and DeVore JG (1979) Multiple flow equilibria in the atmosphere and blocking. J Atmos Sci 36: 1205–1216CrossRefGoogle Scholar
  5. Dalcher A and Kalnay E (1987) Error growth and predictability in operational ECMWF forecasts. Tellus 39A: 474–491Google Scholar
  6. Defant A (1921) Die zerkulation der atmosphäre in den gemässigten breiten der erte. Geograf Ann 3: 209–266CrossRefGoogle Scholar
  7. Douglas CKM (1931) A problem of the general circulation. Q J Roy Meteor Soc 57: 423–431CrossRefGoogle Scholar
  8. Eckmann JP and Procaccia L (1986) Fluctuations of dynamical scaling indices in nonlinear systems. Phys Rev A 34: 659–661CrossRefGoogle Scholar
  9. Farmer JD (1982) Chaotic attractors of an infinite-dimensional dynamical system. Physica 4D: 336–393Google Scholar
  10. Feigenbaum MJ, Kadanoff LP and Shenker SJ (1982) Quasi-periodicity in dissipative systems: A renormalization group analysis. Physica 3D: 370–386Google Scholar
  11. Fraedrich K (1986) Estimating the dimensions of weather and climate attractors. J Atmos Sci 43: 419–432CrossRefGoogle Scholar
  12. Frederiksen JS (1978) Growth rates and phase speeds of baroclinic waves in multi-level models on a shpere. J Atmos Sci 35: 1816–1826CrossRefGoogle Scholar
  13. Grassberger P and Procaccia I (1983) Characterization of strange attractors. Phy Rev Lett 50: 448–451CrossRefGoogle Scholar
  14. Grassberger P and Procaccia I (1984) Dimensions and entropies of strange attractors from a fluctuating dynamical approach. Physica 13D: 34–54Google Scholar
  15. Guckenheimer J and Buzyna G (1983) Dimension measurements for geostrophic turbulence. Phys Rev. Lett 51: 1438–1441CrossRefGoogle Scholar
  16. Hart JE (1979) Finite amplitude baroclinic instability. Ann Rev Fluid Mech 11: 147–172CrossRefGoogle Scholar
  17. Hoskins BJ (1983) Large-scale dynamic processes in the atmosphere. Academic PressGoogle Scholar
  18. Hussain, AKMF (1983) Coherent structures-reality and myth. Phys Fluids 26 (10): 2816–2850CrossRefGoogle Scholar
  19. Jeffreys H (1926) On the dynamics of geostrophic winds. Q J Roy Meteor Soc 52: 85–104CrossRefGoogle Scholar
  20. Kaplan J and Yorke J (1979) Functional differential equations and approximation of fixed points. In: HO Peitigen and HO Waither Speringer-Verlag 228Google Scholar
  21. Kubicek M and Marek M (1983) Computational methods in bifurcation theory and dissipative structures. Springer-VerlagGoogle Scholar
  22. Lichtenberg AJ and Lieberman MA (1983) Regular and stochastic motion. Springer-Verlag 259–285Google Scholar
  23. Lorenz EN (1963) The mechanics of vacillation. J Atmos Sci 20: 448–464CrossRefGoogle Scholar
  24. Lorenz EN (1967) The nature and theory of the general circulation of the atmosphere. WMOGoogle Scholar
  25. Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26: 363–646CrossRefGoogle Scholar
  26. Lorenz EN (1980) Attractors sets and quasi-geostrophic equilibrium. J Atmos Sci 37: 1685–1699CrossRefGoogle Scholar
  27. Lorenz EN (1982) Atmospheric predictability experiments with a large numerical model. Tellus 34: 505–513CrossRefGoogle Scholar
  28. Malguzzi P, Trevisan A and Speranza A (1990) Statistics and predictability for an intermediate dimensionality model of the baroclinic jet. Ann Geoph 8: 29–36Google Scholar
  29. Nicolis C and Nicolis G (1984) Is there a climatic attractor? Nature 311: 529–532CrossRefGoogle Scholar
  30. Pedlosky J (1970) Finite amplitude baroclinic waves. J Atmos Sci 27: 15–30CrossRefGoogle Scholar
  31. Pedlosky J (1979) Geophysical fluid dynamics. Springer-Verlag New York 315–338Google Scholar
  32. Saltzman B (1968) Steady state solutions for axially symmetric climatic variables. Pure Appl Geophys 69: 237–259CrossRefGoogle Scholar
  33. Saltzman B (1978) A survey of statistical-dynamical models of the terrestrial climate. Adv Geophys 20: 183–304CrossRefGoogle Scholar
  34. Saltzman B and Vernekar AD (1968) A parameterization of the large scale eddy flux of relative angular momentum. Mon Wea Rev 96: 854–857CrossRefGoogle Scholar
  35. Saltzman B and Vernekar AD (1971) An equilibrium solution for the axially symmetric component of the Earth’s macroclimate. J Geophys Res 76: 1498–1524CrossRefGoogle Scholar
  36. Schubert SD and Suarez M (1989) Dynamical predictability in a simple General Circulation Model: Average error growth. J Atmos Sci 46: 353–370CrossRefGoogle Scholar
  37. Simmons AJ (1982) The forcing of stationary wave motion by tropical diabatic heating. Quart J Roy Meteor Soc 108: 503–534CrossRefGoogle Scholar
  38. Simmons AJ and Hoskins BJ (1978) The life cycles of some nonlinear baroclinic waves. J Atmos Sci 35: 414–432CrossRefGoogle Scholar
  39. Sparrow C (1982) The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer-VerlagGoogle Scholar
  40. Speranza A and Malguzzi P (1986) The response of atmospheric circulation to anomalous tropical heating: A re-examination of the theory of teleconnections in the context of turbulence theory. Study week: “Persistent Meteo-Oceanographic Anomalies and Teleconnections” RomeGoogle Scholar
  41. Speranz A and Malguzzi P (1988) The statistical properties of a zonal jet in a baroclinic atmosphere: A semilinear approach. Part I: Quasigeostrophic, two-layer model atmosphere. J Atmos Sci 45: 3046–3061CrossRefGoogle Scholar
  42. Trevisan A, Malguzzi P and Fantini M (1990) A note on Lorenz’s law for the growth of large and small errors in the atmosphere. J Atmos Sci (in print)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Antonio Speranza
    • 1
  1. 1.Department of PhysicsUniversity of CamerinoCamerino (MC)Italy

Personalised recommendations