Data Assimilation Problems

  • Olivier Talagrand
Part of the NATO ASI Series book series (volume 5)


The accurate determination of the energy and water cycles of the atmosphere is an ambitious undertaking which will require that the best possible use be made of all the relevant available information, irrespective of its origin, nature and accuracy. The available information will consist first of the observations, in the strict sense of the word: in addition to the already existing system of ground-based and satellite observations, a number of new observing instruments, many of which satellite-borne, will be developed in the coming decade, in the context of the World Climate Research Programme and especially of the Global Energy and Water Cycles Experiment. These new instruments will measure many otherwise inaccessible quantities, such as for instance the atmospheric content in precipitable water.


Distance Function Forecast Error Numerical Weather Prediction Observation Error Adjoint Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson BDO (1979) Optimal Filtering. Prentice Hall, Englewood Cliffs 357 pp.Google Scholar
  2. Bengtsson L, Shukla J (1988) Integration of space and in situ observations to study global climate change. Bull Amer Met Soc 69: 1130–1143.CrossRefGoogle Scholar
  3. Bertsekas DP (1982) Constrained optimization and Lagrange multipler methods. Academic Press London, 395 pp.Google Scholar
  4. Cohn SE, Parrish DF (1991) The Behavior of Forecast Error Covariances for a Kaiman Filter in Two Dimensions. Mon Wea Rev 119: 1757–1785.CrossRefGoogle Scholar
  5. Courtier P, Gauthier P, Rabier F, Flamant P, Dabas A, Lieutaud F, Renault H (1992) Study of preparation of the use of Doppler wind lidar information in meteorological assimilation systems. Final report, ESA Contract 8850/90/HGE-I ESA, Paris.Google Scholar
  6. Courtier P, Talagrand O (1987) Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Numerical results. Quart J Roy Met Soc 113: 1329–1347.CrossRefGoogle Scholar
  7. Courtier P, Talagrand O (1990) Variational assimilation of meteorological observations with the direct and adjoint shallow-water equations. Tellus 42A: 531–549.CrossRefGoogle Scholar
  8. Daley R (1991) Atmospheric Data Analysis. Cambridge Atmospheric and Space Science Series, Cambridge University Press Cambridge, 457 pp.Google Scholar
  9. Daley R (1992) The lagged innovation covariance: A performance diagnostic for atmospheric data assimilation. Mon Wea Rev 120: 178–196.CrossRefGoogle Scholar
  10. Dee DP (1991) Simplification of the Kaiman filter for meteorological data assimilation. Quart J Roy Met Soc 117: 365–384.CrossRefGoogle Scholar
  11. Derber JC (1987) Variational four dimensional analysis using quasi-geostrophic constaints. Mon Wea Rev 115: 998–1008.CrossRefGoogle Scholar
  12. Derber JC, Parrish DF, Lord SJ (1991) The new global operational analysis system at the National Meteorological Center. Wea Forecasting 6: 538–547.CrossRefGoogle Scholar
  13. Douady D, Talagrand O (1990) The impact of threshold processes on variational assimilation. In: Proceedings of International Symposium on Assimilation of Observations in Meteorology and Oceanography, World Meteorological Organization Geneva, Switzerland, 486–487.Google Scholar
  14. Eyre J (1989a) Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS, Quart J Roy Met Soc 115: 1001–1026.CrossRefGoogle Scholar
  15. Eyre J (1989b) Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. II: Application to TOVS data, Quart J R Met Soc 115: 1027–1037.CrossRefGoogle Scholar
  16. Gandin LS (1963) Objective analysis of meteorological fields. Gidrometeor Izd Leningrad (in Russian), (English Translation by Israel Program for Scientific Translations, Jerusalem, 1965).Google Scholar
  17. Gaspar P, Wunsch C (1989) Estimates from altimeter data of barotropic Rossby waves in the Northwestern Atlantic Ocean. J Phys Oceanogr 19: 1821–1844.CrossRefGoogle Scholar
  18. Ghil M (1989) Meteorological data assimilation for oceanographers. Part I. Description and theoretical framework. Dyn Atmos Oceans 13: 171–218.CrossRefGoogle Scholar
  19. Ghil M, Malanotte-Rizzoli P (1991) Data assimilation in meteorology and oceanography. Adv in Geophys 33: 141–266.CrossRefGoogle Scholar
  20. Gill PE, Murray W, Wright MH (1982) Practical Optimization. Academic Press London.Google Scholar
  21. Hoffman RN (1986) A four-dimensional analysis exactly satisfying equations of motion. Mon Wea Revc 114: 388–397.CrossRefGoogle Scholar
  22. Jazwinski AH (1970) Stochastic Processes and Filtering Theory. Academic Press New-York.Google Scholar
  23. Kaiman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82D: 35–45.CrossRefGoogle Scholar
  24. Kinter III JL, Shukla J (1989) Meeting review: Re-analysis for TOGA (Tropical Oceans Global Atmophere). Bull Amer Met Soc 70: 1422–1427.Google Scholar
  25. Lacarra JF, Talagrand O (1988) Short-range evolution of small perturbations in a barotropic model. Tellus 40A: 81–95.Google Scholar
  26. Le Dimet FX, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus 38A: 97–110.Google Scholar
  27. Lewis JM, Derber JC (1985) The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus 37A: 309–322.Google Scholar
  28. Lions PL (1971) Optimal control of systems governed by partial differential equations. Springer-Verlag Berlin, 396 pp.Google Scholar
  29. Lorenc A (1981) A global three-dimensional multivariate statistical interpolation scheme. Mon Wea Rev 109: 701–721.CrossRefGoogle Scholar
  30. Lorenc A (1986) Analysis methods for numerical weather prediction. Quart J Roy Met Soc 112: 1177–1194.CrossRefGoogle Scholar
  31. Lorenc A (1988) Optimal nonlinear objective analysis. Quart J Roy Met Soc 114: 205–240.CrossRefGoogle Scholar
  32. Morgenstern J (1984) How to compute fast a function and all its derivatives. A variation on the theorem of Baur-Stressen. Report No 49 Laboratoire CNRS 168, Universit de Nice, Nice, France, 5 pp.Google Scholar
  33. Navon IM, Zou X, Johnson K, Derber J, Sela J (1991) Variational data assimilation with an adiabatic version of the NMC spectral model. Report FSU-SCRI-91–13 The Florida State University, Tallahassee, Florida, USA, 43pp.Google Scholar
  34. Penenko VV, Obraztsov NN (1976) A variational initialization method for the fields of the meteorological elements (English translation). Soviet Meteorol Hydrol 11: 1–11.Google Scholar
  35. Sasaki Y (1970) Some basic formalisms in numerical variational analysis. Mon Wea Rev 98: 875–883.CrossRefGoogle Scholar
  36. Sheinbaum J, Anderson DLT (1990a) Variational Assimilation of XBT Data. Part I. J Phys Oceanogr 20: 672–688.CrossRefGoogle Scholar
  37. Sheinbaum J, Anderson DLT (1990b) Variational Assimilation of XBT Data. Part II: Sensitivity Studies and Use of Smoothing Constraints. J Phys Oceanogr 20: 689–704.CrossRefGoogle Scholar
  38. Sun J, Flicker DW, Lilly DK (1991) Recovery of three-dimensional wind and temperature fields from simulated single-doppler radar data. J Atmos Sci 48: 876–890.CrossRefGoogle Scholar
  39. Talagrand O, Courtier P (1987) Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart J Roy Met Soc 113: 1311–1328.CrossRefGoogle Scholar
  40. Temperton C (1988) Implicit normal mode initialization. Mon Wea Rev 116: 1013–1031.CrossRefGoogle Scholar
  41. Thacker WC, Long RB (1988) Fitting dynamics to data. J Geophys Res 93: 1227–1240.CrossRefGoogle Scholar
  42. Thépaut JN (1992) Variational assimilation of meteorological observations with a multilevel primitive-equation model. in preparation Google Scholar
  43. Thépaut JN, Courtier P (1991) Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model. Quart J Roy Met Soc 117: 1225–1254.CrossRefGoogle Scholar
  44. Thépaut JN, Moll P (1990) Variational inversion of simulated TOVS radiances using the adjoint technique. Quart J Roy Met Soc 116: 1425–1448.CrossRefGoogle Scholar
  45. Vautard R (1990) Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon Wea Rev 118: 2056–2081.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Olivier Talagrand
    • 1
  1. 1.Laboratoire de Météorologie Dynamique du CNRSParis Cedex 05France

Personalised recommendations