Skip to main content

Convective and Large-Scale Cloud Processes in GCMS

  • Conference paper
Energy and Water Cycles in the Climate System

Part of the book series: NATO ASI Series ((ASII,volume 5))

Abstract

The wide range of global climate model (GCM) estimates of climate sensitivity to increasing trace gas concentrations is a result of differing treatments of poorly understood feedback processes associated with the hydrologic cycle. Within the atmosphere, these feedbacks reflect the effects of phase changes of water on radiative fluxes. For this reason, one of the highest priorities of the World Climate Research Programme is an understanding of the impact on climate of changes in cloud properties. Complementing this is the Global Energy and Water Cycle Experiment (GEWEX), whose prime objective is a description and understanding of the transport of water and energy within the atmosphere and across the atmosphere-surface interface (WCRP, 1990). Both of these goals in turn require a research emphasis on the representation of cloud radiative, dynamic, and microphysical processes in climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa A, Chen J-M (1987) Closure assumptions in the cumulus parameterization problem. Short- and Medium-Range Numerical Weather Prediction, Suppl to J Meteor Soc Japan: 107–131

    Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J Atmos Sci 31: 674–701

    Article  Google Scholar 

  • Arking A (1990) Feedback processes and climate response. Climate impact of solar variability. NASA CP-3086 (Schatten KH, Arking A, eds): 219–226

    Google Scholar 

  • Arking A (1991) The radiative effects of clouds and their impact on climate. Bull Amer Meteor Soc 71: 795–813

    Article  Google Scholar 

  • Bates TS, Charlson RJ, Gammon RH (1987) Evidence for the climatic role of marine biogenic sulfur. Nature 329: 319 – 321

    Article  Google Scholar 

  • Betts AK (1986) A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart J Roy Meteor Soc 112: 677–691

    Google Scholar 

  • Betts AK, Harshvardhan (1987) Thermodynamic constraint on the cloud liquid water feedback in climate models. J Geophys Res 92: 8483–8485

    Article  Google Scholar 

  • Blyth AM, Cooper WA, Jensen JB (1988) A study of the source of entrained air in Montana cumuli. J Atmos Sci 45: 3944–3964

    Article  Google Scholar 

  • Cess RD, Potter GL, Blanchet JP, Boer GJ, Del Genio AD, Deque M, Dymnikov V, Galin V, Gates WL, Ghan SJ, Kiehl JT, Lacis AA, Le Treut H, Li Z-X, Liang X-Z, McA-vaney BJ, Meleshko VP, Mitchell JFB, Morcrette J-J, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I, Zhang M-H (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95: 16601–16615

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326: 655–661

    Article  Google Scholar 

  • Cheng M-D, Arakawa A (1991) Inclusion of convective downdrafts in the Arakawa-Schubert cumulus parameterization. Preprints, 19th Conf on Hurricanes and Tropical Meteor, Amer Meteor Soc, Boston: 295–300

    Google Scholar 

  • Curry JA, Ardeel CD, Tian L (1990) Liquid water content and precipitation characteristics of stratiform clouds as inferred from satellite microwave measurements. J Geophys Res 95: 16659–16671

    Article  Google Scholar 

  • Deardorff JW (1980) Cloud-top entrainment instability. J Atmos Sci 37: 131–147

    Article  Google Scholar 

  • Del Genio AD, Yao M-S (1988) Sensitivity of a global climate model to the specification of convective updraft and downdraft mass fluxes. J Atmos Sci 45: 2641–2668

    Article  Google Scholar 

  • Del Genio AD, Yao M-S (1990) Predicting cloud water variations in the GISS GCM. Preprints, Conf on Cloud Phys, Amer Meteor Soc, Boston: 497–504

    Google Scholar 

  • Del Genio AD, Lacis AA, Ruedy RA (1991) Simulations of the effect of a warmer climate on atmospheric humidity. Nature 351: 382–385

    Article  Google Scholar 

  • Donner LJ (1990) Parameterizing mesoscale and large-scale ice clouds in general circulation models. Preprints, Conf on Cloud Phys, Amer Meteor Soc, Boston: J104–J109

    Google Scholar 

  • Ellsaesser HW (1984) The climatic effect of CO2: A different view. Atmos Environ 18: 431–434

    Article  Google Scholar 

  • Emanuel KA (1990) A scheme for representing cumulus convection in large-scale models. MIT Center for Global Change, Science Report No. 3, Cambridge, MA

    Google Scholar 

  • Feigelson EM (1978) Preliminary radiation model of a cloudy atmosphere. Part I — Structure of clouds and solar radiation. Beitr Phys Atmos 51: 203–229

    Google Scholar 

  • Foley JA, Taylor KE, Ghan SJ (1991) Planktonic dimethylsulfide and cloud albedo: An estimate of the feedback response. Clim Change 18: 1–15

    Article  Google Scholar 

  • Fouquart Y, Buriez JC, Herman M, Kandel RS (1990) The influence of clouds on radiation: A climate-modeling perspective. Rev Geophys 28: 145–166

    Article  Google Scholar 

  • Fu R, Del Genio AD, Rossow WB, Liu WT (1992) Cirrus cloud thermostat for tropical sea surface temperatures tested using satellite data. Nature 358: 394–397

    Article  Google Scholar 

  • Gregory D, Rowntree PR (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon Wea Rev 118: 1483–1506

    Article  Google Scholar 

  • Han Q, Rossow WB, Lacis AA (1991) Initial survey of cloud particle sizes using ISCCP data. Preprints, 5th Conf on Climate Variations, Amer Meteor Soc, Boston: 372–375

    Google Scholar 

  • Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeff S, Ruedy R, Travis L (1983) Efficient three-dimensional global models for climate studies: Models I and II. Mon Wea Rev 111: 609–662

    Article  Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity (Hansen JE, Takahashi T, Eds), Amer Geophys Union, Washington, DC: 130–163

    Chapter  Google Scholar 

  • Hobbs PV, Rangno AL (1985) Ice particle concentrations in clouds. J Atmos Sci 42: 2523–2549

    Article  Google Scholar 

  • Houze RA Jr, Betts AK (1981) Convection in GATE. Rev Geophys Space Phys 19: 541–576

    Article  Google Scholar 

  • Knupp KR, Cotton WR (1985) Convective cloud downdraft structure: An interpretive survey. Rev Geophys 23: 183–215

    Article  Google Scholar 

  • Kuo H-L (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J Atmos Sci 31: 1232–1240

    Article  Google Scholar 

  • Kuo H, Schubert WH (1988) Stability of cloud-topped boundary layers. Quart J Roy Meteor Soc 114: 887–916

    Article  Google Scholar 

  • Le Mone MA, Barnes GM, Zipser EJ (1984) Momentum flux by lines of cumulonimbus over the tropical oceans. J Atmos Sci 41: 1914–1932

    Article  Google Scholar 

  • Le Treut H, Li Z-X (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Climate Dyn 5: 175–187

    Google Scholar 

  • Lindzen RS (1990) Some coolness concerning global warming. Bull Amer Meteor Soc 71: 288–299

    Article  Google Scholar 

  • MacVean MK, Mason PJ (1990) Cloud-top entrainment instability through small-scale mixing and its parametrization in numerical models. J Atmos Sci 47: 1012–1030

    Article  Google Scholar 

  • Manabe S, Smagorinsky J, Strickler RF (1965) Simulated climatology of a general circulation model with a hydrological cycle. Mon Wea Rev 93: 769–798

    Article  Google Scholar 

  • Mitchell JFB, Senior CA, Ingram WJ (1989) CO2 and climate: A missing feedback? Nature 341: 132–134

    Article  Google Scholar 

  • Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models. Mon Wea Rev 20: 978–1002

    Article  Google Scholar 

  • Nakajima T, King MD, Spinhirne JD, Radke LF (1991) Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. J Atmos Sci 48: 728–750

    Article  Google Scholar 

  • Nicholls S (1984) The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart J Roy Meteor Soc 110: 783–870

    Article  Google Scholar 

  • Paluch IR (1979) The entrainment mechanism in Colorado cumuli. J Atmos Sci 36: 2462–2478

    Article  Google Scholar 

  • Pan V, Randall DA (1991) Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic cumulus kinetic energy. Preprints, 19th Conf on Hurricanes and Tropical Meteor, Amer Meteor Soc, Boston: 301–304

    Google Scholar 

  • Platt CMR (1989) The role of cloud microphysics in high-cloud feedback effects on climate change. Nature 341: 428–429

    Article  Google Scholar 

  • Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nino. Nature 351: 27–32

    Article  Google Scholar 

  • Randall DA (1980) Conditional instability of the first kind upside-down. J Atmos Sci 37: 125–130

    Article  Google Scholar 

  • Randall DA, Abeles JA, Corsetti TG (1985) Seasonal simulations of the planetary boundary layer and boundary-layer stratocumulus clouds with a general circulation model. J Atmos Sci 42: 641–676

    Article  Google Scholar 

  • Rind D, Chiou E-W, Chu W, Larsen J, Oltmans S, Lerner J, McCormick P, McMaster L (1991) Positive water vapor feedback in climate models confirmed by satellite data. Nature 349: 500–503

    Article  Google Scholar 

  • Roeckner E (1988) Cloud-radiation feedbacks in a climate model. Atmos Res 21: 293–303

    Article  Google Scholar 

  • Rossow WB, Lacis A A (1990) Global, seasonal cloud variations from satellite radiance measurements. Part II: Cloud properties and radiative effects. J Climate 3: 1204–1253

    Article  Google Scholar 

  • Sassen K, Starr DO’C, Uttal T (1989) Mesoscale and microscale structure of cirrus clouds: Three case studies. J Atmos Sci 46: 371–396

    Article  Google Scholar 

  • Schneider EK, Lindzen RS (1976) A discussion of the parameterization of momentum exchange by cumulus convection. J Geophys Res 81: 3158–3160

    Article  Google Scholar 

  • Schwartz SE (1988) Are global cloud albedo and climate controlled by marine phytoplankton? Nature 336: 441–445

    Article  Google Scholar 

  • Siems ST, Bretherton CS, Baker MB, Shy S, Briedenthal RE (1990) Buoyancy reversal and cloud-top entrainment instability. Quart J Roy Meteor Soc 116: 705–739

    Article  Google Scholar 

  • Slingo A, Nicholls S, Schmetz J (1982) Aircraft observations of marine stratocumulus during JASIN. Quart J Roy Meteor Soc 108: 833–856

    Article  Google Scholar 

  • Slingo A, Wilderspin RC, Smith RNB (1989) The effect of improved parameterizations on simulations of cloudiness and the earth’s radiation budget in the tropics. J Geophys Res 94: 2281–2302

    Article  Google Scholar 

  • Slingo JM (1980) A cloud parameterization scheme derived from GATE data for use with a numerical model. Quart J Roy Meteor Soc 106: 747–770

    Article  Google Scholar 

  • Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Quart J Roy Meteor Soc 116: 435–460

    Article  Google Scholar 

  • Somerville RCJ, Remer LA (1984) Cloud optical thickness feedbacks in the CO2 climate problem. J Geophys Res 89: 9668–9672

    Article  Google Scholar 

  • Starr DO’C, Cox SK (1985) Cirrus clouds. Part II: Numerical experiments on the formation and maintenance of cirrus. J Atmos Sci 42: 2682–2694

    Article  Google Scholar 

  • Sundqvist H (1978) A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart J Roy Meteor Soc 104: 677–690

    Article  Google Scholar 

  • Sundqvist H, Berge E, Kristjánsson JE (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Wea Rev 117: 1641–1657

    Article  Google Scholar 

  • Tao W-K, Simpson J, Soong S-T (1987) Statistical properties of a cloud ensemble: A numerical study. J Atmos Sci 44: 3175–3187

    Article  Google Scholar 

  • Tian L, Curry JA (1989) Cloud overlap statistics. J Geophys Res 94: 9925–9935

    Article  Google Scholar 

  • Tiedtke M, Heckley WA, Slingo J (1988) Tropical forecasting at ECMWF: The influence of physical parametrization on the mean structure of forecasts and analyses. Quart J Roy Meteor Soc 114: 639–664

    Article  Google Scholar 

  • Tselioudis G, Rossow WB, Rind D (1992) Global patterns of cloud optical thickness variation with temperature. J Climate: in press

    Google Scholar 

  • Washington WM, Meehl GA (1984) Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model. J Geophys Res 89: 9475–9503

    Article  Google Scholar 

  • Wielicki BA, Suttles JT, Heymsfield AJ, Welch RM, Spinhirne JD, Wu M-LC, Starr DO’C, Parker L, Arduini RF (1990) The 27–28 October 1986 FIRE IFO cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft. Mon Wea Rev 118: 2356–2376

    Article  Google Scholar 

  • WCRP (1990) Scientific Plan for the Global Energy and Water Cycle Experiment. World Climate Research Programme Report No. 40 (WMO/TD — No. 376), Geneva, Switzerland

    Google Scholar 

  • Xu K-M, Krueger SK (1991) Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon Wea Rev 119: 342–367

    Article  Google Scholar 

  • Yao M-S, Del Genio AD (1989) Effects of cumulus entrainment and multiple cloud types on a January global climate model simulation. J Climate 2: 850–863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Del Genio, A.D. (1993). Convective and Large-Scale Cloud Processes in GCMS. In: Raschke, E., Jacob, D. (eds) Energy and Water Cycles in the Climate System. NATO ASI Series, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76957-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76957-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76959-7

  • Online ISBN: 978-3-642-76957-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics