Skip to main content

The Terrestrial Hydrological Cycle

  • Conference paper
Energy and Water Cycles in the Climate System

Part of the book series: NATO ASI Series ((ASII,volume 5))

Abstract

The global hydrological cycle describes the transport and occurrence of water in all three phases and its transformations from one phase to the other, on a global scale. It directly influences the cycles of other compounds, the energy cycle, the geomorphological shape of the earth as well as the global circulation of atmosphere and oceans, and by that weather and climate. Historically, different parts of the hydrological cycle have been studied by scientists from different disciplines, e. g. atmospheric water by meteorologists, oceanic water by oceanographers and terrestrial water by hydrologists. This paper will focus on the study of water present at the continent and the mutual interaction of surface and sub-surface processes with the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986a) An introduction to the European Hydrological System - Systeme Hydrologique Européen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J Hydrol 87: 45–59

    Article  Google Scholar 

  • Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986b) An introduction to the European Hydrological System - Systeme Hydrologique Européen, “SHE”, 2: Structure of a physically-based, distributed modelling system. J Hydrol 87: 61–77

    Article  Google Scholar 

  • André JC, Schmugge TJ, Perrier A, Goutorbe JP (1990) HAPEX-Mobilhy: Results from a large scale field experiment. In: O’Connell PE (ed) Recent advances in hydrological modelling. NATO 13–20

    Google Scholar 

  • Avissar R, Verstraete MM (1990) The representation of continental surface processes in atmospheric models.Rev Geophys 28(1): 35–52

    Google Scholar 

  • Bard Y (1974) Nonlinear parameter estimation. Academic Press Inc London

    Google Scholar 

  • Bastiaansen WGM (1991) Derivation of areal soil physical data from satellite measurements. In: Kienitz, G et al. (eds) Hydrological interactions between atmosphere, soil and vegetation IAHS publ no. 204: 95–105

    Google Scholar 

  • Bathurst JC (1986a) Physically-based distributed modelling of an upland catchment using the Système Hydrologique Européen. J Hydrol 87: 79–102

    Article  Google Scholar 

  • Bathurst JC (1986b) Sensitivity analysis of the Systeme Hydrologique Européen for an upland catchment. J Hydrol 87: 103–123

    Article  Google Scholar 

  • Belmans C, Wesseling JG, Feddes RA (1983) Simulation model of the water balance of a cropped soil providing different types of boundary conditions: SWATRE. J Hydrol 63: 271–286

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ, Schofield N, Tagg AF (1984) Testing a physically-based flood forecasting model (TOPMODEL), for three U.K. catchments. J Hydrol 69: 119–143

    Article  Google Scholar 

  • Bolle HJ et al. (1992) EFEDA-Spain: Description of a field experiment and some first results. Ann Geophys (in preparation)

    Google Scholar 

  • Brutsaert W (1986) Catchment-Scale Evaporation and the Atmospheric Boundary Layer. Wat Res Res 22(9): 39S-45S

    Article  Google Scholar 

  • Carlson TN (1991) Recent advances in modelling the infrared temperature of vegetation canopies. In: Schmugge TJ, André JC (eds) Land Surface Evaporation, Measurements and Parameterization. Springer Verlag New York, 349–358

    Chapter  Google Scholar 

  • Choudhury BJ (1991a) Passive microwave remote sensing contribution to hydrological variables. Surv Geophys 12: 63–84

    Article  Google Scholar 

  • Choudhury BJ (1991b) Multispectral satellite data in the context of land surface heat balance. Rev Geophys 29(2), p 217–236

    Article  Google Scholar 

  • Clarke RT (1973) Mathematical models in hydrology.FAO Irrigation and Drainage Paper no. 19

    Google Scholar 

  • Corradini C, Melone F, Ubertini L, Singh VP (1986) Geomorphic approach to synthesis of direct runoff hydrograph from the Upper Tiber River Basin, Italy. In: Gupta VK et al. (eds) Scale proble…… drology; Runoff generation and basin response. Reidel Publ Comp Dordtrecht, 57–80

    Google Scholar 

  • ………..(1977) A parameterization of ground surface moisture content for use in atmospheric. J Appl Meteor 16: 1182–1185

    Article  Google Scholar 

  • De Marsily G (1986) Quantitative Hydrogeology. Academic Press Inc San Diego, California

    Google Scholar 

  • Dooge JCI (1973) Linear theory of hydrologic systems. Agr Res Serie USDA, Techn. Bull. no. 1468

    Google Scholar 

  • Dooge JCI (1986) Looking for Hydrologic Law. Wat Res Res 22(9): 46S–58S

    Article  Google Scholar 

  • Dooge JCI (1989) The Role of the Hydrological Cycle in Climate. In: Berger et al. (eds) Climate and Geo-Sciences. Kluwer, Dordtrecht, 355–366

    Google Scholar 

  • Eagleson PS (1991) Hydrologie science: A distinct Geoscience. Rev Geophys 29(2): 237–248

    Article  Google Scholar 

  • Entekhabi D, Eagleson PS (1989) Land surface parameterization for atmospheric General Circulation Models including subgrid scale spatial variability. J Clim 2: 816–831

    Article  Google Scholar 

  • Famiglietti JS, Wood EF (1991) Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models. In: Wood EF (ed) Land Surface Atmosphere interactions for climate modeling. Kluwer Acad Publ Dordtrecht, 179–204

    Google Scholar 

  • Feddes RA (1981) Water use models for assessing root zone modification. In: Modifying the plant root environment.Monograph 4 ASAE, St. Joseph, 347–390

    Google Scholar 

  • Feddes RA, Kabat P, Van Bakel PJT, Halbertsma J (1988) Modelling soil water dynamics in the unsaturated zone, state of art. J Hydrol 100 (special issue) 69–111

    Article  Google Scholar 

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation model of the water balance of a cropped soil. Simulation Monograph PUDOC, Wageningen

    Google Scholar 

  • Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: A review. Rev Geophys 28(2): 191–216

    Article  Google Scholar 

  • Goutorbe JP, Noilhan J, Valancogne C, Cuenca RH (1989) Soil moisture variation during HAPEX-Mobilhy. Ann Geophys 7(4): 415–426

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; a hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56: 275–370

    Article  Google Scholar 

  • Kool JB, Parker JC (1987) Estimating soil hydraulic properties from transient flow experiments: SFIT user’s guide. Dept. of Soil and Environmental sciences, Virginia Polytechnic Institute and State University Blacksburg, Virginia

    Google Scholar 

  • Kraijenhoff van de Leur DA (1958) A study of non-steady groundwater flow with special reference to a reservoir coefficient. Ingenieur 70 (19): 87–94

    Google Scholar 

  • Lumadjeng HS (1989) Modelling the hydrological response to human activities. In: Flow regimes from experimental and network data (FREND). Institute of Hydrology Wallingford, UK

    Google Scholar 

  • Mantoglou A, Gelhar LW (1987) Large-scale transient unsaturated flow. Wat Res Res 23(1): 37–46

    Article  Google Scholar 

  • Menenti M (1984) Physical aspects and determination of evaporation in deserts applying remote sensing techniques. Ph.D. Thesis and Report 10 (special issue), The Winand Staring Centre Wageningen

    Google Scholar 

  • Menenti M, Visser TNM, Morabito JA, Drovandi A (1989) Appraisal of irrigation performance with satellite data and georeferences information. In: Rydzewsky JR, Ward K (eds) Irrigation Theory and Practice, Pentech Press London, 785–801

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: The state and movement of water in living organisms. 19th Symp Soc Exp Biol 205–234

    Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Wea Rev 117: 536–549

    Article  Google Scholar 

  • Philip JR (1969) Theory of infiltration. In: Advances of Hydroscience vol. 5. 216–296

    Google Scholar 

  • Raudkivi AJ (1979) Hydrology, an advanced introduction to hydrological processes and modelling. Pergamon Press

    Google Scholar 

  • Ritehie JT (1972) A model for predicting evaporation from a crop with incomplete cover. Wat Res Res 8(5): 1204–1213

    Article  Google Scholar 

  • Rodriquez-Iturbe J, Valdés JB (1979) The geomorphologic structure of hydrologic response. Wat Res Res 15(6): 1409–1420

    Article  Google Scholar 

  • Rott H, Aschbacher J (1989) On the use of satellite microwave radiometers for large-scale hydrology. In: Rango A (ed) Remote sensing and large-scale global processes. IAHS Publ no. 186: 21–31

    Google Scholar 

  • Rowntree PR (1984) Review of General Circulation Models as a basis for predicting the effects of vegetation change on climate. In: Reynolds ERC, Thompson (eds) Forests, Climate and Hydrology: regional impacts. United Nations University 1988, Oxford, 162–196

    Google Scholar 

  • Running SW, Nemani R, Peterson DL, Band LE, Potts DF, Preice LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with eco-system simulation. Ecology 70: 1090–1111

    Article  Google Scholar 

  • Schmugge TJ, Becker F (1991) Remote sensing observations for the monitoring of land surface fluxes and water budgets. In: Schmugge TJ, André JC (eds) Land Surface Evaporation, Measurement and Parameterization. Springer Verlag 337–347.

    Chapter  Google Scholar 

  • Sellers P et al. (1990) First ISLSCP field experiment: Experiment, execution and preliminary analysis. In: O’Conell PE (ed) Recent advances in hydrological modelling. NATO 49–58.

    Google Scholar 

  • Shih S (1989) Potential application of satellite data for rainfall estimation. In: Rango A (ed) Remote sensing and large-scale global processes. IAHS Publ no. 186: 97–104

    Google Scholar 

  • Shuttleworth WJ (1991) The role of hydrology in global science. In: Kienitz, G et al. (eds) Hydrological interactions between atmosphere, soil and vegetation IAHS Publ. no 204: 361–375

    Google Scholar 

  • Smagorinsky J (1982) Large-scale climate modelling and small-scale physical processes. In: Eagle-son PS (ed) Land surface processes in atmospheric general circulation models. Cambridge University Press Cambridge

    Google Scholar 

  • Sugita M, Brutsaert W (1990) Regional surface fluxes from remotely sensed skin temperature and lower boundary layer measurements. Wat Res Res 26(12): 2937–2944

    Article  Google Scholar 

  • Ten Berge H (1986) Heat and water transfer at the bare soil surface. Ph.D. Thesis. Agricultural University Wageningen 214

    Google Scholar 

  • Tillotson PM, Nielsen DR (1984) Scale factors in soil science. Soil Sci Soc Am J 48(5): 953–959

    Article  Google Scholar 

  • Unlii K, Nielsen DR, Biggar JW (1990) Stochastic analysis of unsaturated flow: One-dimensional Monte Carlo simulations and comparisons with spectral perturbation analysis and field observation. Wat Res Res 26(9): 2207–2218

    Google Scholar 

  • Van de Griend A, Owe M, Groen M, Stoll MP (1991) Measurement and spatial variation of TIR-surface emissivity in a savanna environment. Wat Res Res 27(3): 371–379

    Article  Google Scholar 

  • Warrilow DA (1986) Indications of the sensitivity of European climate to land use variations using a one-dimensional model. In Proc ISLSCP Conference Rome, Italy, 2–6 December 1985

    Google Scholar 

  • Weinberg GM (1975) An introduction to general systems thinking. Wiley- Interscience New York

    Google Scholar 

  • Wood EF, Sivapalan M, Beven KJ (1990) Similarity and scale in catchment storm response. Rev Geophys 28(1): 1–18

    Article  Google Scholar 

  • Warmerdam PMM, Strieker JNM (1982) Estimation of the water balance in the Hupselse Beek basin over a period of three years and a first effort to simulate the rainfall-runoff process for a complete year. In: Proc of the Int Symp on Hydrological Research Basins and their use in Water Resources Planning Bern 1982, 379–388

    Google Scholar 

  • Wesseling JG, Kabat P, Van Den Broek BJ, Feddes RA (1989) Instructions for input. SWACROP. The Winand Staring Centre Wageningen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stricker, J.N.M., Kim, C.R., Feddes, R.A., van Dam, J.C., Droogers, P., de Rooij, G.H. (1993). The Terrestrial Hydrological Cycle. In: Raschke, E., Jacob, D. (eds) Energy and Water Cycles in the Climate System. NATO ASI Series, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76957-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76957-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76959-7

  • Online ISBN: 978-3-642-76957-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics