Skip to main content

Modelling of Oceans Circulation

  • Conference paper
  • 145 Accesses

Part of the book series: NATO ASI Series ((ASII,volume 5))

Abstract

The ocean covers 70% of the earth surface and it contains 97% of the earth water. It has a considerable “buffer” role in the climate system due to its large heat capacity (2.5 m of ocean water has the same heat capacity than the total atmospheric column above it) and its weight (the density of ocean water is 1.02 · 103 kg m -3 as the air density is 1.2 kg m -3). The sea water has a temperature range within -1.90 to 32 ° C for a salinity of open sea varying from 33 to 37‰ but 75% of the oceans volume is filled with water in a very narrow range of temperature (between 0 and 4 ° C) and of salinity (between 34.4 and 34.7varying from 33 to 37‰ but 75%). In enclosed or semi-enclosed seas, much more variability can be found for temperature and salinity values. The vertical profile of temperature is nearly homogeneous in high latitudes and the constrast between surface temperature and deep temperature increases equatorward. In the equatorial band, a strong and sharp thermocline separates the warm reservoir from the cold deep waters. As we move polewards, the thermocline thickens and deepens. These properties are common to the three oceans in winter conditions. The water mass distribution and the ocean circulation are closely linked together and the water mass properties are determined through complex air-sea interactions. It is thus very important to understand and to model the air-sea interactions and how surface properties are transfered into the deep ocean. The ocean communicates with the atmosphere via exchanges in momentum, in water flux and heat flux.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asselin R (1972) Frequency filter for time integration. Mon Wea Rev 100: No. 6, 487–490.

    Article  Google Scholar 

  • Bougeault P, Lacarrère T (1989) On the stability of the third-order turbulence closure for the modeling of the stratocumulus-topped boundary layer. J Atmos Res 88: 4579–4592.

    Google Scholar 

  • Bryan F (1987) Parameter sensitivity of primitive equation ocean general circulation models. J Phys Oceanogr 17: 970–985.

    Article  Google Scholar 

  • Bryan K (1969) A numerical method for the study of the circulation of the world ocean. J Comput Phys 4(3): 347–376.

    Article  Google Scholar 

  • Bryan K (1984) Accelerating the convergence to equilibrium of ocean-climate models. J Phys Oceanogr 14: 666–673.

    Article  Google Scholar 

  • Bryan K (1986) Poleward buoyancy transport in the ocean and mesoscale eddies. J Phys Oceanogr 16: 927–933.

    Article  Google Scholar 

  • Bryden HL (1979) Poleward heat flux and conversion of available potential energy in the Drake Passage. J Mar Res 37: 1–22.

    Google Scholar 

  • Bryden HL (1982) Sources of eddy energy in the Gulf Stream recirculation region. J Mar Res 40(4): 1047–1068.

    Google Scholar 

  • Chartier M (1985) Un modèle numérique tridimensionnel aux équations primitives de la circulation générale de l’océan, Thèse de l’université Pierre et Mairie Curie, CEA Report R-5372 111 pages.

    Google Scholar 

  • Courant, Friedrich, Levy (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Annalen 100: 32–74.

    Article  Google Scholar 

  • Fujio S, Imasato N (1990) Diagnostic calculation for circulation and water mass movement in the deep Pacific. J Geophys Res 96: 759–774.

    Article  Google Scholar 

  • Gaspar P, Gregoris Y, Lefevre JM (1990) A simple eddy-kinetic-energy model for simulations of the ocean vertical mixing: tests at station Papa and Long-Term Upper Ocean Study Site site. J Geophys Res 95: 16179–16193.

    Article  Google Scholar 

  • Haney R L (1971) Surface thermal boundary condition for ocean circulation models. J Phys Oceanogr 1: 241–248.

    Article  Google Scholar 

  • Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error estimates. J Phys Oceanogr 13: 1 093–1 104.

    Article  Google Scholar 

  • Kolmogorov AN (1942) The equation of turbulent motion in an incompressible fluid. Izv. Akad. Nauk. SSSR, Ser. Fiz. 6: 56–58.

    Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean, NOAA Prof paper 13: Washington D.C.

    Google Scholar 

  • Mesinger F, Arakawa A (1976) Numerical methods used in atmospheric models. GARP Publication No. 17.

    Google Scholar 

  • Oberhuber J M (1988) An atlas based on the’COADS’ data set: The budget of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean. Max-Planck-Institut für Meteorologie, Hamburg, Report No. 15.

    Google Scholar 

  • Pacanowski R, Philander SGH (1981) Parametrization of vertical mixing in numerical models of tropical ocean. J. Phys. Oceanogr 11: 1443–1451.

    Article  Google Scholar 

  • Reverdin G, Delecluse P, Levy D, Andrich P, Morliére A, Verstraete JM (1991) The near surface Atlantic in 1982–1984: Results from a numerical simulation and a data analysis. Prog Oceanogr 27: 273–340.

    Article  Google Scholar 

  • Sarmiento JL (1986) On the north and tropical Atlantic heat balance. J Geophys Res 91: 11677–11698.

    Article  Google Scholar 

  • Sarmiento JL, Bryan K (1982) An ocean transport model for the North Atlantic. J Geophys Res 87: 394–408.

    Article  Google Scholar 

  • Semtner AJ Jr (1974) An oceanic general circulation model with bottom topography. Tech Rep 9 99 pp., Dep. of Meteorol., Univ. of Calif., Los Angeles.

    Google Scholar 

  • Semtner AJ Jr, Chervin R (1988) A simulation of the global ocean circulation with resolved eddies. J Geophys Res 93: 15, 502–15,552.

    Article  Google Scholar 

  • Sverdrup HU (1947) Wind-driven currents in a baroclinic ocean: with application to the equatorial currents in the eastern Pacific. Proceedings of the National Academy of Science 33: 318–329.

    Article  Google Scholar 

  • Toggweiler JR, Dixon K, Bryan K (1989) Simulation of radiocarbon in a coarse-resolution world ocean model, 1, Steady state prebomb distributions. J Geophys Res 94: 8217–8242.

    Article  Google Scholar 

  • Toggweiler JR, Dixon K, Bryan K (1989) Simulation of radiocarbon in a coarse-resolution world ocean model, 2, Distributions of bomb-produced carbon 14. J Geophys Res 94: 8243–8264.

    Article  Google Scholar 

  • Unesco (1983) Algorithms for computation of fundamental property of sea water. UNESCO Tech Paper in Marine Science 44: 53 pp.

    Google Scholar 

  • Wyrtki K (1981) An estimate of equatorial upwelling in the Pacific. J Phys Oceanogr 11: 1205–1214.

    Article  Google Scholar 

  • Yin FL, Fung IY (1991) Net diffusivity in General Circulation Models with nonuniform grids. J Geophys Res 96: NO C6, 10773–10776.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delecluse, P. (1993). Modelling of Oceans Circulation. In: Raschke, E., Jacob, D. (eds) Energy and Water Cycles in the Climate System. NATO ASI Series, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76957-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76957-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76959-7

  • Online ISBN: 978-3-642-76957-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics