Modelling of Oceans Circulation

  • P. Delecluse
Conference paper
Part of the NATO ASI Series book series (volume 5)


The ocean covers 70% of the earth surface and it contains 97% of the earth water. It has a considerable “buffer” role in the climate system due to its large heat capacity (2.5 m of ocean water has the same heat capacity than the total atmospheric column above it) and its weight (the density of ocean water is 1.02 · 103 kg m -3 as the air density is 1.2 kg m -3). The sea water has a temperature range within -1.90 to 32 ° C for a salinity of open sea varying from 33 to 37‰ but 75% of the oceans volume is filled with water in a very narrow range of temperature (between 0 and 4 ° C) and of salinity (between 34.4 and 34.7varying from 33 to 37‰ but 75%). In enclosed or semi-enclosed seas, much more variability can be found for temperature and salinity values. The vertical profile of temperature is nearly homogeneous in high latitudes and the constrast between surface temperature and deep temperature increases equatorward. In the equatorial band, a strong and sharp thermocline separates the warm reservoir from the cold deep waters. As we move polewards, the thermocline thickens and deepens. These properties are common to the three oceans in winter conditions. The water mass distribution and the ocean circulation are closely linked together and the water mass properties are determined through complex air-sea interactions. It is thus very important to understand and to model the air-sea interactions and how surface properties are transfered into the deep ocean. The ocean communicates with the atmosphere via exchanges in momentum, in water flux and heat flux.


Mixed Layer Wind Stress Latent Heat Flux Ocean Circulation Deep Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asselin R (1972) Frequency filter for time integration. Mon Wea Rev 100: No. 6, 487–490.CrossRefGoogle Scholar
  2. Bougeault P, Lacarrère T (1989) On the stability of the third-order turbulence closure for the modeling of the stratocumulus-topped boundary layer. J Atmos Res 88: 4579–4592.Google Scholar
  3. Bryan F (1987) Parameter sensitivity of primitive equation ocean general circulation models. J Phys Oceanogr 17: 970–985.CrossRefGoogle Scholar
  4. Bryan K (1969) A numerical method for the study of the circulation of the world ocean. J Comput Phys 4(3): 347–376.CrossRefGoogle Scholar
  5. Bryan K (1984) Accelerating the convergence to equilibrium of ocean-climate models. J Phys Oceanogr 14: 666–673.CrossRefGoogle Scholar
  6. Bryan K (1986) Poleward buoyancy transport in the ocean and mesoscale eddies. J Phys Oceanogr 16: 927–933.CrossRefGoogle Scholar
  7. Bryden HL (1979) Poleward heat flux and conversion of available potential energy in the Drake Passage. J Mar Res 37: 1–22.Google Scholar
  8. Bryden HL (1982) Sources of eddy energy in the Gulf Stream recirculation region. J Mar Res 40(4): 1047–1068.Google Scholar
  9. Chartier M (1985) Un modèle numérique tridimensionnel aux équations primitives de la circulation générale de l’océan, Thèse de l’université Pierre et Mairie Curie, CEA Report R-5372 111 pages.Google Scholar
  10. Courant, Friedrich, Levy (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Annalen 100: 32–74.CrossRefGoogle Scholar
  11. Fujio S, Imasato N (1990) Diagnostic calculation for circulation and water mass movement in the deep Pacific. J Geophys Res 96: 759–774.CrossRefGoogle Scholar
  12. Gaspar P, Gregoris Y, Lefevre JM (1990) A simple eddy-kinetic-energy model for simulations of the ocean vertical mixing: tests at station Papa and Long-Term Upper Ocean Study Site site. J Geophys Res 95: 16179–16193.CrossRefGoogle Scholar
  13. Haney R L (1971) Surface thermal boundary condition for ocean circulation models. J Phys Oceanogr 1: 241–248.CrossRefGoogle Scholar
  14. Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error estimates. J Phys Oceanogr 13: 1 093–1 104.CrossRefGoogle Scholar
  15. Kolmogorov AN (1942) The equation of turbulent motion in an incompressible fluid. Izv. Akad. Nauk. SSSR, Ser. Fiz. 6: 56–58.Google Scholar
  16. Levitus S (1982) Climatological atlas of the world ocean, NOAA Prof paper 13: Washington D.C.Google Scholar
  17. Mesinger F, Arakawa A (1976) Numerical methods used in atmospheric models. GARP Publication No. 17.Google Scholar
  18. Oberhuber J M (1988) An atlas based on the’COADS’ data set: The budget of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean. Max-Planck-Institut für Meteorologie, Hamburg, Report No. 15.Google Scholar
  19. Pacanowski R, Philander SGH (1981) Parametrization of vertical mixing in numerical models of tropical ocean. J. Phys. Oceanogr 11: 1443–1451.CrossRefGoogle Scholar
  20. Reverdin G, Delecluse P, Levy D, Andrich P, Morliére A, Verstraete JM (1991) The near surface Atlantic in 1982–1984: Results from a numerical simulation and a data analysis. Prog Oceanogr 27: 273–340.CrossRefGoogle Scholar
  21. Sarmiento JL (1986) On the north and tropical Atlantic heat balance. J Geophys Res 91: 11677–11698.CrossRefGoogle Scholar
  22. Sarmiento JL, Bryan K (1982) An ocean transport model for the North Atlantic. J Geophys Res 87: 394–408.CrossRefGoogle Scholar
  23. Semtner AJ Jr (1974) An oceanic general circulation model with bottom topography. Tech Rep 9 99 pp., Dep. of Meteorol., Univ. of Calif., Los Angeles.Google Scholar
  24. Semtner AJ Jr, Chervin R (1988) A simulation of the global ocean circulation with resolved eddies. J Geophys Res 93: 15, 502–15,552.CrossRefGoogle Scholar
  25. Sverdrup HU (1947) Wind-driven currents in a baroclinic ocean: with application to the equatorial currents in the eastern Pacific. Proceedings of the National Academy of Science 33: 318–329.CrossRefGoogle Scholar
  26. Toggweiler JR, Dixon K, Bryan K (1989) Simulation of radiocarbon in a coarse-resolution world ocean model, 1, Steady state prebomb distributions. J Geophys Res 94: 8217–8242.CrossRefGoogle Scholar
  27. Toggweiler JR, Dixon K, Bryan K (1989) Simulation of radiocarbon in a coarse-resolution world ocean model, 2, Distributions of bomb-produced carbon 14. J Geophys Res 94: 8243–8264.CrossRefGoogle Scholar
  28. Unesco (1983) Algorithms for computation of fundamental property of sea water. UNESCO Tech Paper in Marine Science 44: 53 pp.Google Scholar
  29. Wyrtki K (1981) An estimate of equatorial upwelling in the Pacific. J Phys Oceanogr 11: 1205–1214.CrossRefGoogle Scholar
  30. Yin FL, Fung IY (1991) Net diffusivity in General Circulation Models with nonuniform grids. J Geophys Res 96: NO C6, 10773–10776.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. Delecluse
    • 1
  1. 1.LODYC - CNRSUniversité Pierre et Marie CurieParis - Cedex 05France

Personalised recommendations