Skip to main content

The Norwegian Sea Record of the Last Interglacial to Glacial Transition

  • Conference paper
Start of a Glacial

Part of the book series: NATO ASI Series ((ASII,volume 3))

Summary

A detailed analysis of the δ18O record of benthic foraminifera in deep sea cores from the Norwegian Sea shows that at the end of the Eemian interglacial (isotopic substage 5e), continental ice sheets experienced a significant phase of growth, which culminated during the maximum of isotopic substage 5d. The ice-volume was then about half of that of the last glacial maximum. This indicates that the 5e/5d transition marks the inception of the glaciation over the northern hemisphere.

Subpolar planktonic foraminifera almost disappeared from the Norwegian Sea during the second half of isotopic substage 5e, indicating a cooling of surface waters, which began early in response to summer insolation changes and preceded the development of continental ice-sheets. As high temperatures prevailed south of the Greenland — Iceland — Faeroe strait, the thermal contrast between the warm North Atlantic and the cold Norwegian Sea reinforced natural cyclogenesis, which produces large snow storms over the subpolar continents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger WH (1990) The Younger Dryas cold spell - a quest for cause. Palaeogeogr Palaeoclimatol Palaeoecol (Global and Planetary Change Section), 89; 219–237.

    Article  Google Scholar 

  • Broecker W S, Denton GH (1989) The role of ocean-atmosphere reorganization in glacial cycles. Geochim Cosmochim Acta 53:2465–2501.

    Article  Google Scholar 

  • Broecker WS, Bond G, Klas M, Bonani G, Wolfli W (1990) A salt oscillator in the glacial northern Atlantic? I. The concept. Paleoceanography 5:469–477.

    Article  Google Scholar 

  • CLIMAP Project Members (1984) The last interglacial ocean. Quaternary Research 21; 123–224.

    Article  Google Scholar 

  • Duplessy JC, Shackleton NJ (1985) Response of global deep-water circulation to the Earth’s climatic change 135,000–107,000 years ago. Nature 316:500–507.

    Article  Google Scholar 

  • Duplessy JC, Labeyrie LD, Blanc PL (1988a) Norwegian Sea deep water variations over the last climatic cycle: Paleooceano-graphical implications, in Lectures Notes in Earth Sciences, 16, 83–116, edited by H. Wanner and U. Siegenthaler, Springer Verlag, New York.

    Google Scholar 

  • Duplessy J C, Shackleton N J, Fairbanks R G, Labeyrie L, Oppo D, Kallel N (1988b) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3:343–360.

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1325.

    Article  Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342: 637–642.

    Article  Google Scholar 

  • Imbrie, J, Hays JD, Martinson DG, Mclntyre A, Mix A, Morley JJ,Pisias N, Prell W, Shackleton NJ (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of the late marine δ18O record, in Milankovitch and Climate, edited by A. Berger et al., D. Reidel, Hingam, Mass.

    Google Scholar 

  • Imbrie, J, Mclntyre A, Mix A (1989) Oceanic response to orbital forcing in the Late Quaternary; Observational and experimental strategies, in Climate and Geosciences, edited by A. Berger et al, 121–164, Kluwer Acad. Pub.

    Google Scholar 

  • Imbrie, J, Kipp N (1971) A new micro-paleontological method for quantitative paleoclimatology: Application to a late pleistocene Caribbean core, in The Late Cenozoic Glacial Ages, K. K. Turekian ed., 71–181, Yale University Press.

    Google Scholar 

  • Kellogg TB (1973) Late Pleistocene climatic record in Norwegian and Greenland Seadeep sea cores, Ph. D. Thesis, Columbia University, New York, 544 pages.

    Google Scholar 

  • Kellogg TB (1976) Late Quaternary climatic changes: evidence from cores from Norwegian and Greenland Seas. Geol Soc Am Memoir 145:77–110.

    Google Scholar 

  • Kellogg TB, Shackleton NJ, Duplessy JC (1978) Planktonic foraminiferal and oxygen isotopic stratigraphy and paleoclimatology of Norwegian sea deep sea cores. Boreas 7; 61–73.

    Article  Google Scholar 

  • Labeyrie LD, Duplessy JC (1985) Changes in the oceanic 13C/12 C ratio during the last 140,000 years: High latitude surface water records. Palaeogeogr Palaeoclimatol Palaeoecol 50; 217–240.

    Google Scholar 

  • Labeyrie LD, Duplessy JC, Blanc PL (1987) Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327: 477–482.

    Article  Google Scholar 

  • Mix A, Ruddiman WF (1984) Oxygen-isotope analysis and Pleistocene ice volumes. Quat Res 21: 1–20.

    Article  Google Scholar 

  • Pichon JJ/ Labeyrie LD, Bareille G, Labreacherie M, Duprat J, Jouzel J (in press) Surface water temperature changes in the high latitudes of the southern hemisphere over the last glacial-interglacial cycle. Paleoceanography.

    Google Scholar 

  • Ruddiman WF, Mclntyre A (1979) Warmth of the subpolar North Atlantic Ocean during northern hemisphere ice-sheet growth. Science 204:173–175.

    Article  Google Scholar 

  • Ruddiritan WF, Mclntyre A (1984) Ice-age thermal response and climatic role of the surface Atlantic Ocean, 40°N to 63°N. Geol Soc Am Bull 95:381–396.

    Article  Google Scholar 

  • Shackleton NJ (1974) Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial, Colloque CNRS N° 219, 203–210, CNRS, Paris.

    Google Scholar 

  • Shackleton NJ (1987) Oxygen isotopes, ice volume and sea-level. Quaternary Science Reviews 6: 183–190.

    Article  Google Scholar 

  • Stocker TF, Wright DG (1991) Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes.Nature 351: 729–732.

    Article  Google Scholar 

  • Vogelsang E (1990) Paläo-Ozeanographie des Europäischen Nordmeeres an Hand stabiler Kohlenstoff-und Sauerstoffisotope, Thesis, 207 pp, Kiel Univ., (Germany).

    Google Scholar 

  • Watts RG (1985) Global climate variations due to fluctuations in the rate of deep water formation. J Geophys Res 90 (D5): 8067–8070.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duplessy, J.C., Labeyrie, L. (1992). The Norwegian Sea Record of the Last Interglacial to Glacial Transition. In: Kukla, G.J., Went, E. (eds) Start of a Glacial. NATO ASI Series, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76954-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76954-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76956-6

  • Online ISBN: 978-3-642-76954-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics