Advertisement

Demenz pp 87-95 | Cite as

Energiestoffwechsel und Neurotransmittersynthese im Gehirn bei Demenz vom Alzheimer-Typ

  • S. Hoyer
Conference paper

Zusammenfassung

Vor nahezu 50 Jahren konnte erstmals gezeigt werden, daß der oxidative Stoffwechsel des Gehirns unter physiologischen Bedingungen ausschließlich auf der Nutzung von Glukose als Substrat der Energiegewinnung basiert [13]. Spätere Untersuchungen haben diesen Befund bestätigt und zudem dem zerebralen Glukose- und Energiestoffwechsel eine zentrale Stellung bei der Aufrechterhaltung normaler mentaler Funktionen zugewiesen [7,10,17, 19, 44], Aus Glukose werden im Gehirn der Neurotransmitter Acetylcholin [35] und die Aminosäurenneurotransmitter Glutamat, Aspartat, Glyzin und γ-Aminobuttersäure gebildet [2,40,56]. Glutamat und Aspartat haben exzi-tatorische, Glyzin und γ-Aminobuttersäure inhibitorische Wirkungen. Allein diese Beispiele verdeutlichen, daß eine Störung im zerebralen Glukosestoffwechsel zu erheblichen Beeinträchtigungen im Energie- und Neuro-transmitterhaushalt dieses Organs und damit zu mentalen Leistungseinbußen führen muß. Am Beispiel der Demenz vom Alzheimer-Typ sollen derartige pathobiochemische Vorgänge im Gehirn erläutert werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bachelard HS (1971) Specific and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro. J Neurochem 13:213–222CrossRefGoogle Scholar
  2. 2.
    Barkulis SS, Geiger A, Kawikata Y, Aguilar V (1960) A study of the incorporation of 14C derived from glucose into free amino acids of the brain cortex. J Neurochem 5:339–348PubMedCrossRefGoogle Scholar
  3. 3.
    Bowen DM, White P, Spillane JA et al. (1979) Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet 1:11–14PubMedGoogle Scholar
  4. 4.
    Bowen DM, Davison AN (1986) Biochemical sutdies of nerve cells and energy metabolism in Alzheimer’s disease. Br Med Bull 42:75–80PubMedGoogle Scholar
  5. 5.
    Blusztajn JK, Wurtman RJ (1983) Choline and cholinergic neurons. Science 221:614–620PubMedCrossRefGoogle Scholar
  6. 6.
    Blusztajn JK, Maire JC, Tacconi MT, Wurtman RJ (1984) The possible role of neuronal choline metabolism in the pathophysiology of Alzheimer’s disease: A hypothesis. In: Wurtman RJ, Corkin SH, Growdon JH (eds) Alzheimer’s disease: Advances in basic research and therapies. Center Brain Sci Metabol, Cambridge MA, pp 183–198Google Scholar
  7. 7.
    Cohen PJ, Alexander SC, Smith TC, Reivich M, Wollman H (1967) Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J Appl Physiol 23:183–189PubMedGoogle Scholar
  8. 8.
    Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain — focus on NMDA receptors. TINS 10:263–265Google Scholar
  9. 9.
    Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. TINS 10:273–280Google Scholar
  10. 10.
    Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19PubMedCrossRefGoogle Scholar
  11. 11.
    Farooqui AA, Liss L, Horrocks LA (1988) Neurochemical aspects of Alzheimer’s disease: Involvement of membrane phopholipids. Metab Brain Dis 3:19–35PubMedCrossRefGoogle Scholar
  12. 12.
    Friedland RP, Jagust WJ, Huesman RH et al. (1989) Regional cerebral glucose transport and utilization in Alzheimer’s disease. Neurology 39:1427–1434PubMedGoogle Scholar
  13. 13.
    Gibbs EL, Lennox WG, Nims LF, Gibbs FA (1942) Arterial and cerebral venous blood. Arterial-venous differences in man. J Biol Chem 144:325–332Google Scholar
  14. 14.
    Gibson GE, Jope R, Blass JP (1975) Reduced synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain. Biochem J 148:17–29PubMedGoogle Scholar
  15. 15.
    Goate AM, Haynes AR, Owen MJ et al. (1989) Predisposing locus for Alzheimer’s disease on chromosome 21. Lancet 1:352–355PubMedCrossRefGoogle Scholar
  16. 16.
    Gottfries CG (1985) Alzheimer’s disease and senile dementia: Biochemical characteristics and aspects of treatment. Psychopharmacology 86:245–252PubMedCrossRefGoogle Scholar
  17. 17.
    Gottstein U, Bernsmeier A, Sedlmeyer I (1963) Der Kohlenhydratstoffwechsel des menschlichen Gehirns. I. Untersuchung mit substratspezifischen enzymatischen Methoden bei normaler Hinrdurchblutung. Klin Wochenschr 41:943–948PubMedCrossRefGoogle Scholar
  18. 18.
    Hertz MM, Paulson OB, Barry DI, Christiansen JS, Svendsen PA (1981) Insulin increases glucose transfer across the blood-brain barrier. J Clin Invest 67:597–604PubMedCrossRefGoogle Scholar
  19. 19.
    Hoyer S (1970) Der Aminosäurenstoffwechsel des normalen menschlichen Gehirns. Klin Wochenschr 48:1239–1243PubMedCrossRefGoogle Scholar
  20. 20.
    Hoyer S (1988) Glucose and related brain metabolism in dementia of Alzheimer type and its morphological significance. Age 11:158–166CrossRefGoogle Scholar
  21. 21.
    Hoyer S, Nitsch R (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neurol Transm 75:227–232CrossRefGoogle Scholar
  22. 22.
    Hoyer S, Oesterreich K, Wagner O (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J Neurol 235:143–148PubMedCrossRefGoogle Scholar
  23. 23.
    Iwangoff P, Armbruster R, Enz A, Meier-Ruge W, Sandoz P (1980) Glycolytic enzymes from human autoptic brain cortex: Normally aged and demented cases. In: Roberts PJ (ed) Biochemistry of dementia. Wiley, Chichester, pp 258–262Google Scholar
  24. 24.
    Jahr CE, Stevens CF (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325:522–525PubMedCrossRefGoogle Scholar
  25. 25.
    Jaspers K (1959) Allgemeine Psychopathologie, 7. Aufl. Springer, Berlin Göttingen Heidelberg, S 180–187Google Scholar
  26. 26.
    Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531PubMedCrossRefGoogle Scholar
  27. 27.
    Khachaturian ZS (1984) Towards theories of brain ageing. In: Kay DWK, Burrows GD (eds) Handbook of studies on psychiatry and old age. Elsevier, Amsterdam, pp 7–30Google Scholar
  28. 28.
    Ksiezak-Reding H, Blass JP, Gibson GE (1982) Studies on the pyruvate dehydrogenase complex in brain with the arylanine acetyltransferase-coupled essay. J Neurochem 38:1627–1636PubMedCrossRefGoogle Scholar
  29. 29.
    Leenders HJ, Berendes HD, Helmsing PJ, Derksen J, Koninkx JFJG (1974) Nuclear-mitochondrial interactions in the control of mitochondrial respitatory metabolism. Sub-cell Biochem 3:119–147Google Scholar
  30. 30.
    Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55:1151–1191PubMedCrossRefGoogle Scholar
  31. 31.
    Mann DMA, Yates PO, Marcyniuk B (1984) Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol 10:185–207PubMedCrossRefGoogle Scholar
  32. 32.
    Monaghan DT, Nolets VR, Toy DW, Cotman CW (1983) Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites. Nature 306:176–179PubMedCrossRefGoogle Scholar
  33. 33.
    Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212PubMedCrossRefGoogle Scholar
  34. 34.
    Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14:61–76PubMedCrossRefGoogle Scholar
  35. 35.
    Perry EK, Perry RH, Tomlinson BE, Blessed G, Gibson PH (1980) Coenzyme A acety-lating enzymes in Alzheimer’s disease: possible cholinergic „compartment” of pyruvate dehydrogenase. Neurosci Lett 18:105–110PubMedCrossRefGoogle Scholar
  36. 36.
    Polinsky RJ, Noble H, Dichiro G, Nee LE, Feldman RG, Brown RT (1987) Domin-antly inherited Alzheimer’s disease: cerebral glucose metabolism. J Neurol Neurosurg Psychiatry 50:752–757PubMedCrossRefGoogle Scholar
  37. 37.
    Roth M (1986) The association of clinical and neurological findings and its bearing on the classification and aetiology of Alzheimer’s disease. Br Med Bull 42:42–50PubMedGoogle Scholar
  38. 38.
    Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891PubMedGoogle Scholar
  39. 39.
    Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111PubMedCrossRefGoogle Scholar
  40. 40.
    Sacks W (1965) Cerebral metabolism of double labeled glucose in human in vivo. J Appl Physiol 20:117–130PubMedGoogle Scholar
  41. 41.
    Salbaum JM, Weidemann A, Lemaire HG, Masters CL, Beyreuther K (1988) The promoter of Alzheimer’s disease amyloid A4 precursor gene. EMBO J 7:2807–2813PubMedGoogle Scholar
  42. 42.
    Schneider K (1959) Klinische Psychopathologie, 5. Aufl. Thieme, Stuttgart, S 63Google Scholar
  43. 43.
    Sheu KFR, Kim YP, Blass JP, Weksler ME (1985) An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer’s disease brain. Ann Neurol 17:444–449PubMedCrossRefGoogle Scholar
  44. 44.
    Siesjö BK (1978) Brain energy metabolism. Wiley, Chichester, chapters 1, 6Google Scholar
  45. 45.
    Siesjö BK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1:155–185PubMedCrossRefGoogle Scholar
  46. 46.
    Siesjö BK, Wieloch T (1985) Cerebral metabolism in ischemia: neurochemical basis for therapy. Br J Anaesth 57:47–62PubMedCrossRefGoogle Scholar
  47. 47.
    Sims NR, Bowen DM, Neary D, Davison AN (1983) Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14CO2 from (14-C) glucose in vitro in human neocortex. J Neurochem 41:1329–1334PubMedCrossRefGoogle Scholar
  48. 48.
    Sims NR, Blass JP, Murphy C, Bowen DM, Neary D (1987) Phosphofructokinase activity in the brain in Alzheimer’s disease. Ann Neurol 21:509–510PubMedCrossRefGoogle Scholar
  49. 49.
    Sims NR, Finegan JM, Blass JP, Bowen DM, Neary D (1987) Mitochondrial function in brain tissue in primary degenerative dementia. Brain Res 436:30–38PubMedCrossRefGoogle Scholar
  50. 50.
    Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78PubMedCrossRefGoogle Scholar
  51. 51.
    Strange PG (1988) The structure and mechanism of neurotransmitter receptors. Implications for the structure and function of the central nervous system. Biochem J 249:309–318PubMedGoogle Scholar
  52. 52.
    Tucek S (1967) Subcellular distribution of acetyl-CoA synthetase, ATP citrate lyase, citrate synthetase, choline acetyltransferase, fumarate hydratase, and lactate dehydrogenase in mammalian brain tissue. J Neurochem 14:531–545PubMedCrossRefGoogle Scholar
  53. 53.
    Tucek S (1978) Acetylcholine synthesis in neurons. Chapman & Hall, LondonGoogle Scholar
  54. 54.
    Wan B, LaNoue KF, Cheung JV, Scaduto RC Jr (1989) Regulation of citric acid cycle by calcium. J Biol Chem 264:13 430–13 439Google Scholar
  55. 55.
    Westerberg E, Deshpande JK, Wieloch T (1987) Regional differences in arachidonic acid release in rat hippocampal CA1 and CA3 regions during cerebral ischemia. J Cereb Blood Flow Metab 7:189–192PubMedCrossRefGoogle Scholar
  56. 56.
    Wong KL, Tyce GM (1983) Glucose and amino acid metabolism in rat brain during sustained hypoglycemia. Neurochem Res 8:401–415PubMedCrossRefGoogle Scholar
  57. 57.
    Zanotto L, Heinemann U (1983) Aspartate and glutamate induced reactions in extracellular free calcium and sodium concentration in area CA1 of „in vitro“hippocampal slices of rats. Neurosci Lett 35:79–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • S. Hoyer

There are no affiliations available

Personalised recommendations