Skip to main content

Molecular Mechanisms of Mitosis and Cytokinesis

  • Chapter
Muscle Contraction and Cell Motility

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 12))

Abstract

Eukaryotic cells manifest many types of motility, which are generally based on either microtubules or microfilaments. The cytostructures formed by these filament systems and also by 10–nm filaments are called cytoskeletons. In many cases, the cytoskeleton is a dynamic structure which is cyclically constructed and destroyed in the cell during its lifetime. Typical examples of both of these cytoskeletons are seen during the course of cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cao L-g, Wang Y-l (1990) Mechanism of the formation of contractile ring in dividing cultured animal cells. II. Cortical movement of microinjected actin filaments. J Cell Biol 111: 1905–1911

    Article  PubMed  CAS  Google Scholar 

  • Egelhoff TT, Manstein DJ, Spudich JA (1990) Complementation of myosin null mutants in Dictyostelium discoideum by direct functional selection. Dev Biol 137:359–367.

    Article  PubMed  CAS  Google Scholar 

  • Endow SA, Henikoff S, Soler-Niedziela L (1990) Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature 345:81–83

    Article  PubMed  CAS  Google Scholar 

  • Enos AP, Morris NR (1990) Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Hagan IM, Yanagida M (1990) Novel potential mitotic motor protein encoded by the fission yeast cut7 + gene. Nature 347:563–566

    Article  PubMed  CAS  Google Scholar 

  • Hayden JH, Bowser SS, Rieder CL (1990) Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J Cell Biol 111:1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Hyman AA, Mitchison TJ (1991) Two different microtubule-based motor activities with opposite polarities in kinetochore. Nature 351:206–211

    Article  PubMed  CAS  Google Scholar 

  • Kubota HY, Itoh K, Asada-Kubota M (1991) Cytological and biochemical analyses of the maternal-effect mutant embryos with abnormal cleavage furrow formation in Xenopus laevis. Dev Biol 144:145–151

    Article  PubMed  CAS  Google Scholar 

  • McDonald HB, Stewart RJ, Goldstein LSB (1990) The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63:1159–1165

    Article  PubMed  CAS  Google Scholar 

  • Oakley BR, Oakley CE, Yoon Y, Jung MK (1990) γ-Tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61:12891301

    Article  PubMed  CAS  Google Scholar 

  • Pfarr CM, Coue M, Grissom PM, Hays TS, Porter ME, Mcintosh JR (1990) Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345:263–265

    Article  PubMed  CAS  Google Scholar 

  • Pluta AF, Cook CA, Earnshaw WC (1990) Structure of the human centromere at metaphase. Trends Biol Sci 15:181–185

    Article  CAS  Google Scholar 

  • Sawin KE, Mitchison TJ (1991a) Mitotic spindle assembly by two different pathways in vitro. J Cell Biol 112:925–940

    Article  PubMed  CAS  Google Scholar 

  • Sawin KE, Mitchison TJ (1991b) Poleward microtubule flux in mitotic spindles assembled in vitro. J Cell Biol 112:941–954

    Article  PubMed  CAS  Google Scholar 

  • Steuer ER, Wordeman L, Schroer TA, Sheets MP (1990) Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345:266–268

    Article  PubMed  CAS  Google Scholar 

  • Vale RD (1991) Severing of stable microtubules by mitotically activated protein in Xenopus egg extracts. Cell 64:827–839

    Article  PubMed  CAS  Google Scholar 

  • Walker RA, Salmon ED, Endow SA (1990) The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347:780–782

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Knowles BA, Goldstein LSB, Hawleys RS (1990) A kinesin-like protein required for distributive chromosome segregation in Drosophila. Cell 62:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Jung MK, Oakley BR (1991) γ-Tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65:817–823

    Article  PubMed  CAS  Google Scholar 

  • Allen C, Borisy GG (1974) Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J Mol Biol 90:381–402

    Article  CAS  Google Scholar 

  • Allen RD, Bajer A, LaFountain J (1969) Poleward migration of particles or states in spindle fiber filaments during mitosis in Haemanthus. J Cell Biol 43:4a

    Google Scholar 

  • Amos LA, Klug A (1974) The arrangement of subunits in flagellar microtubules. J Cell Sci 14:523–549

    PubMed  CAS  Google Scholar 

  • Arnold JM (1969) Cleavage furrow formation in a telolecthal egg (Loligo pealli). J Cell Biol 41:894–904

    Article  PubMed  CAS  Google Scholar 

  • Aubin JE, Osborn M, Weber K (1979) Inhibition of cytokinesis and altered contractile ring morphology induced by cytochalasins in synchronized PtK2 cells. Exp Cell Res 136:63–79

    Article  Google Scholar 

  • Bajer A (1973) Interaction of microtubules and the mechanism of chromosome movement (zipper hypothesis). Cytobios 8:139–160

    PubMed  CAS  Google Scholar 

  • Bajer A (1982) Functional autonomy of monopolar spindle and evidence of oscillatory movement in mitosis. J Cell Biol 93:33–48

    Article  PubMed  CAS  Google Scholar 

  • Bajer A, Mole-Bajer J (1969) Formation of spindle fibers, kinetochore orientation, and behavior of the nuclear envelope during mitosis in endosperm. Chromosoma 27:448–484

    Article  Google Scholar 

  • Bajer A, Molé-Bajer J (1972) Spindle dynamics and chromosome movements. Int Rev Cytol Suppl 3:1–271

    Google Scholar 

  • Balczon RD, Brinkley BR (1987) Tubulin interaction with kinetochore protein: analysis by in vitro assembly and chemical cross-linking. J Cell Biol 105:855–862

    Article  PubMed  CAS  Google Scholar 

  • Bergen LG, Borisy GG (1980) Head-to-tail polymerization of microtubules in vitro: electron microsope analysis of seeded assembly. J Cell Biol 84:141–150

    Article  PubMed  CAS  Google Scholar 

  • Bergen LG, Kuriyama R, Borisy GG (1980) Polarity of microtubules nucleated by centrosomes and chromosomes of CHO cells in vitro. J Cell Biol 84:151–159

    Article  PubMed  CAS  Google Scholar 

  • Bonder EM, Fishkind DJ, Cotran NM, Begg DA (1989) The cortical actin-membrane cytoskeleton of unfertilized sea urchin eggs: analysis of the spatial organization and relationship of filamentous actin, nonfilamentous actin, and egg spectrin. Dev Biol 134:327–341

    Article  PubMed  CAS  Google Scholar 

  • Brinkley BR, Kartwright J (1975) Cold-labile and cold-stable microtubules in the mitotic spindle of mammalian cells. Ann N Y Acad Sci 253:109–123

    Article  Google Scholar 

  • Brinkley BR, Zinkowski RP, Mollon WL, Davis FM, Pisegna MA, Pershouse M, Rao PN (1988) Movement and segregation of kinetochores experimentally detached from mammalian chromosomes. Nature 336:251–254

    Article  PubMed  CAS  Google Scholar 

  • Brinkley BR, Valdivia MM, Tousson A, Balczon RD (1989) The kinetoehore: structure and molecular organization. In: Hyams JS, Brinkley BR (eds) Mitosis, molecules and mechanisms. Academic Press, New York, pp 77–118

    Google Scholar 

  • Cande WZ (1980) A permeabilized cell model for studying cytokinesis using mammalian tissue culture cells. J Cell Biol 87:326–335

    Article  PubMed  CAS  Google Scholar 

  • Cande WZ (1982) Nucleotide requirements for anaphase chromosome movements in permeablized mitotic cells: anaphase B but not anaphase A requires ATP. Cell 28:15–22

    Article  PubMed  CAS  Google Scholar 

  • Cande WZ, McDonald KL (1985) In vitro reactivation of anaphase spindle elongation using isolated diatom spindles. Nature 316:168–170

    Article  PubMed  CAS  Google Scholar 

  • Cande WZ, Baskin T, Hogan C, McDonald KL, Masuda H, Wordeman L (1989) In vitro analysis of anaphase spindle elongation. In: Warner FD, Mcintosh JR (eds) Cell movement, vol 2. Kinesin, dynein and microtubule dynamics. Alan R Liss, New York, pp 441–452

    Google Scholar 

  • Carlier M-F, Hill TL, Chen Y-D (1984) Interference of GTP hydrolysis in the mechanism of microtubule assembly: an experimental study. Proc Natl Acad Sci USA 81:771–775

    Article  PubMed  CAS  Google Scholar 

  • Cassimeris L, Pryer NK, Salmon ED (1988) Real-time observations of microtubule dynamic instability in living cells. J Cell Biol 107:2223–2231

    Article  PubMed  CAS  Google Scholar 

  • Dan K (1943) Behavior of the cell surface during cleavage. VI. On the mechanism of cell division. J Fac Sci Tokyo Imp Univ Sec 4, 6:323–368

    Google Scholar 

  • Dan K (1988) Mechanism of equal cleavage of sea urchin egg: transposition from astral mechanism to constricting mechanism. Zool Sci 5:507–517

    Google Scholar 

  • De Lozanne A, Spudich JA (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236:1086–1091

    Article  PubMed  Google Scholar 

  • Devore JJ, Conrad GW, Rappaport R (1990) A model for astral stimulation of cytokinesis in animal cells. J Cell Biol 109:2225–2232

    Article  Google Scholar 

  • Dinsmore JH, Sloboda RD (1988) Calcium and calmodulin-dependent phosphorylation of a 62 kD protein induces microtubule depolymerization in sea urchin mitotic apparatus. Cell 53:769–780

    Article  PubMed  CAS  Google Scholar 

  • Euteneuer U, Mcintosh JR (1981) Structural polarity of kinetoehore microtubules in PtK1 cells. J Cell Biol 89:338–345

    Article  PubMed  CAS  Google Scholar 

  • Euteneuer U, Ris H, Borisy GG (1983) Polarity of kinetoehore microtubules in Chinese hamster ovary cells after recovery from a colcemid block. J Cell Biol 97:202–208

    Article  PubMed  CAS  Google Scholar 

  • Forer A (1965) Local reduction of spindle fiber birefringence in living Nephrotoma suturalis spermatocytes induced by ultraviolet microbeam irradiation. J Cell Biol 25:95–117

    Article  PubMed  Google Scholar 

  • Fujiwara K, Pollard TD (1976) Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol 71:848–875

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara K, Porter ME, Pollard TD (1978) Alpha-actinin localization in the cleavage furrow during cytokinesis. J Cell Biol 79:268–275

    Article  PubMed  CAS  Google Scholar 

  • Fukui Y, Lynch TJ, Brzeska H, Korn ED (1989) Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature 341:328–331

    Article  PubMed  CAS  Google Scholar 

  • Gorbsky GJ, Borisy GG (1989) Microtubules of the kinetoehore fiber turn over in metaphase but not in anaphase. J Cell Biol 109:653–662

    Article  PubMed  CAS  Google Scholar 

  • Gorbsky GJ, Sammak PJ, Borisy GG (1987) Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetoehore ends. J Cell Biol 104:9–18

    Article  PubMed  CAS  Google Scholar 

  • Gorbsky GJ, Sammak PJ, Borisy GG (1988) Microtubule dynamics and chromosome motion visualized in living anaphase cells. J Cell Biol 106:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Haimo LT, Telzer BR (1981) Dynein-microtubule interactions. ATP-sensitive dynein binding and the structural polarity of mitotic microtubules. Cold Spring Harbor Symp Quant Biol 46:207–218

    CAS  Google Scholar 

  • Hamaguchi MS, Hamaguchi Y, Hiramoto T (1986) Microinjected polystylene beads move along astral rays in sand dollar eggs. Dev Growth Differ 28:461–470

    Article  Google Scholar 

  • Hamaguchi Y (1975) Microinjection of colchicine into sea urchin eggs. Dev Growth Differ 17:111–117

    Article  Google Scholar 

  • Hamaguchi Y, Mabuchi I (1982) Effects of phalloidin microinjection and localization of fluorescein-labeled phalloidin in living sand dollar eggs. Cell Motil 2:103–113

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi Y, Toriyama M, Sakai H, Hiramoto Y (1987) Redistribution of fluoreseently labeled tubulin in the mitotic apparatus of sand dollar eggs and the effects of taxol. Cell Struct Funct 12:43–52

    Article  PubMed  CAS  Google Scholar 

  • Hays TS, Salmon ED (1990) Poleward force at the kinetochore in metaphase depends on the number of kinetochore microtubules. J Cell Biol 110:391–404

    Article  PubMed  CAS  Google Scholar 

  • Hays TS, Wise D, Salmon ED (1982) Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length. J Cell Biol 93:374–382

    Article  PubMed  CAS  Google Scholar 

  • Henson JH, Begg DA, Beaulieu SM, Fishkind DJ, Bonder EM, Terasaki M, Lebeche DL, Kaminer B (1989) A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo. J Cell Biol 109:149–161

    Article  PubMed  CAS  Google Scholar 

  • Hiramoto Y (1956) Cell division without mitotic apparatus in sea urchin eggs. Exp Cell Res 11:630–636

    Article  PubMed  CAS  Google Scholar 

  • Hiramoto Y (1975) Force exerted by the cleavage furrow of sea urchin eggs. Dev Growth Differ 17:27–38

    Article  Google Scholar 

  • Hiramoto Y (1979) Mechanical properties of the dividing sea urchin egg. In: Hatano S, Ishikawa H, Sato H (eds) Cell motility: molecules and organization. University of Tokyo Press, Tokyo, pp 653–663

    Google Scholar 

  • Hiramoto Y, Izutsu K (1977) Poleward movement of “markers” existing in mitotic spindles of grasshopper spermatocytes. Cell Struct Funct 2:257–259

    Article  Google Scholar 

  • Hiramoto Y, Shoji Y (1982) Location of the motive force for chromosome movement in sand dollar eggs. In: Sakai H, Mohri H, Borisy GG (eds) Biological functions of microtubules and related structures. Academic Press, New York, pp 247–259

    Google Scholar 

  • Hisanaga S, Sakai H (1980) Cytoplasmic dynein of the sea urchin egg. I. Dev Growth Differ 22:373–384

    Article  CAS  Google Scholar 

  • Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607

    Article  PubMed  CAS  Google Scholar 

  • Hotani H, Horio T (1988) Dynamics of microtubules visualized by dark field microscopy: treadmilling and dynamic instability. Cell Motil Cytoskelet 10:229–236

    Article  CAS  Google Scholar 

  • Huitorel P, Kirschner MW (1988) The polarity and stability of microtubule capture by the kinetochore. J Cell Biol 106:151–159

    Article  PubMed  CAS  Google Scholar 

  • Inoué S (1981) Cell division an the mitotic spindle. J Cell Biol 91:131s-147s

    Article  PubMed  Google Scholar 

  • Inoué S, Ritter H (1975) Dynamics of mitotic spindle organization and function. In: Inoué S, Stephens RE (eds) Molecules and cell movement. Raven, New York, pp 3–29

    Google Scholar 

  • Inoué S, Sato H (1967) Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol 50:259–292

    Article  PubMed  Google Scholar 

  • Ishidate S, Mabuchi I (1988a) A novel actin filament-capping protein from sea urchin eggs: a 20000-moleeular weight protein-actin complex. J Biochem 104:72–80

    PubMed  CAS  Google Scholar 

  • Ishidate S, Mabuchi I (1988b) Localization and possible function of 20kDa actin-modulating protein (actolinkin) in the sea urchin egg. Eur J Biochem 46:275–281

    CAS  Google Scholar 

  • Ishimoda-Takagi (1979) Localization of tropomyosin in sea urchin eggs. Exp Cell Res 119:423–428

    Article  PubMed  CAS  Google Scholar 

  • Ishimoda-Takagi (1984) Evidence for the involvement of muscle tropomyosin in the contractile elements of the coelomesophagus complex in sea urchin embryos. Dev Biol 105: 365–376

    Article  PubMed  CAS  Google Scholar 

  • Jameson L, Frey T, Zeeberg B, Dalldorf F, Caplow M (1980) Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry 19:2472–2479

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Ishikawa H (1989) The cytoskeletal involvement in cellularization of the Drosophila melanogaster embryo. Protoplasma 150:83–95

    Article  Google Scholar 

  • Kiehart DP, Mabuchi I, Inoué S (1982) Evidence that myosin does not contribute to force production in chromosome movement. J Cell Biol 94:165–178

    Article  PubMed  CAS  Google Scholar 

  • Knabe T, Kobayashi I, Tanaka K (1989) Dynamics of cytoplasmic organelles in the cell cycle of the fission yeast Schizosaccharomyces pombe: three dimensional reconstruction from serial sections. J Cell Sci 94:647–656

    Google Scholar 

  • Knecht DA, Loomis WF (1987) Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science 236:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Koshland DE, Mitchison TJ, Kirschner MW (1988) Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331:499–504

    Article  PubMed  CAS  Google Scholar 

  • Kron SJ, Spudich JA (1986) Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA 83:6272–6276

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama R (1984) Activity and stability of centrosomes in Chinese hamster ovary cells in nucleation of microtubules in vitro. J Cell Sci 66:277–295

    PubMed  CAS  Google Scholar 

  • Kuriyama R, Borisy GG (1985) Identification of molecular components of the centrosphere in the mitotic spindle of sea urchin eggs. J Cell Biol 101:524–530

    Article  PubMed  CAS  Google Scholar 

  • Langanger G, De Mey J, Moeremans M, Daneeis G, De Brabander M, Small JV (1984) Ultrastructural localization of α-actinin and filamin in cultured cells with the immunogold staining (IGS) method. J Cell Biol 99:1324–1334

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi I (1973) ATPase in the cortical layer of sea urchin egg: its properties and interaction with cortex protein. Biochim. Biophys Acta 297:317–332

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi I (1986) Biochemical aspects of cytokinesis. Int Rev Cytol 101:175–213

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi I (1990) Cleavage furrow formation and actin-modulating proteins. Ann N Y Acad Sci 582:131–146

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi I, Kane RE (1987) A 250K-molecular weight actin-binding protein from actin-based gels formed in sea urchin egg cytoplasmic extract. J Biochem 102:947–956

    PubMed  CAS  Google Scholar 

  • Mabuchi I, Okuno M (1977) The effect of myosin antibody on the cell division of starfish blastomeres. J Cell Biol 74:251–263

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi I, Takano-Ohmuro H (1990) Effects of inhibitors of myosin light chain kinase and other protein kinases on the first cell division of sea urchin eggs. Dev Growth Differ 32:549–556

    Article  CAS  Google Scholar 

  • Mabuchi I, Hosoya H, Sakai H (1980) Actin in the cortical layer of the sea urchin egg. Changes in its content during and after fertilization. Biomed Res 1:417–426

    CAS  Google Scholar 

  • Mabuchi I, Hamaguchi Y, Kobayashi T, Hosoya H, Tsukita S, Tsukita S (1985) Alpha-actinin from sea urchin eggs: biochemical properties, interaction with actin, and distribution in the cell during fertilization and cleavage. J Cell Biol 100:375–383

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi I, Tsukita S, Tsukita S, Sawai T (1988) Cleavage furrow isolated from newt eggs: contraction, organization of actin filaments, and protein components of the furrow. Proc Nat Acad Sci USA 85:5966–5970

    Article  PubMed  CAS  Google Scholar 

  • Maekawa S, Endo S, Sakai H (1987) A high molecular weight actin binding protein: its localization in the cortex of the sea urchin egg. Exp Cell Res 172:340–353

    Article  PubMed  CAS  Google Scholar 

  • Manstein DJ, Titus MA, De Lozanne A, Spudich JA (1989) Gene replacement in Dictyostelium: generation of myosin null mutants. EMBO J 8:923–932

    PubMed  CAS  Google Scholar 

  • Margolis RL, Wilson L (1978) Opposite end assembly and disassembly of microtubules at steady-state in vitro. Cell 13:1–8

    Article  PubMed  CAS  Google Scholar 

  • Margolis RL, Wilson L (1981) Microtubule treadmills - possible molecular machinery. Nature 298:705–711

    Article  Google Scholar 

  • Margolis RL, Wilson L, Kiefer BI (1978) Mitotic mechanism based on intrinsic microtubule behavior. Nature 272:450–452

    Article  PubMed  CAS  Google Scholar 

  • Marsland D, Landau JV (1954) The mechanism of cytokinesis: temperature-pressure studies on the cortical gel system in various marine eggs. J Exp Zool 125:507–539

    Article  Google Scholar 

  • Masuda H, Cande WZ (1987) The role of tubulin polymerization during spindle elongation in vitro. Cell 49:193–202

    Article  PubMed  CAS  Google Scholar 

  • Masuda H, McDonald KL, Cande WZ (1988) The mechanism of anaphase spindle elongation: uncoupling of tubulin incorporation and microtubule sliding during in vitro spindle reactivation. J Cell Biol 107:623–633

    Article  PubMed  CAS  Google Scholar 

  • Masuda H, Hirano T, Yanagida M, Cande WZ (1990) In vitro reactivation of spindle elongation in fission yeast nuc2 mutant cells. J Cell Biol 110:417–425

    Article  PubMed  CAS  Google Scholar 

  • Maupin P, Pollard TD (1986) Arrangement of actin filaments and myosin-like filaments in the contractile ring and of actin-like filaments in the mitotic spindle of dividing HeLa cells. J Ultrastruct Mol Struct Res 94:92–103

    Article  PubMed  CAS  Google Scholar 

  • Mazia D (1987) The chromosome cycle and the centrosome cycle in the mitotic cycle. Int Rev Cytol 100:49–92

    Article  PubMed  CAS  Google Scholar 

  • Mazia D, Dan K (1952) The isolation and biochemical characterization of the mitotic apparatus of dividing cells. Proc Natl Acad Sci USA 38:826–838

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey G, Vale RD (1989) Identification of a kinesin-like microtubule-based motor protein in Dictyostelium discoideum. EMBO J 8:3229–3234

    PubMed  CAS  Google Scholar 

  • McDonald KL, Pickett-Heaps JD, Mcintosh JR, Tippit DH (1977) On the mechanism of anaphase spindle elongation in Diatom vulgare. J Cell Biol 74:377–388

    Article  PubMed  CAS  Google Scholar 

  • Mcintosh JR (1985) Spindle structure and the mechanism of chromosome movement. In “Aneuploidy: Etiology and Mechanism” Dellarco V, Voytek PE and Hollander A, eds. Plenum, New York, pp 197–229

    Google Scholar 

  • Mcintosh JR, Vigers GPA, Hays TS (1989) Dynamic behavior of mitotic microtubules. In: Warner FD, Mcintosh JR (eds) Cell movement, vol 2. Kinesin, dynein and microtubule dynamics. Alan R Liss, New York, pp 371–382

    Google Scholar 

  • Mitchison TJ (1989a) Chromosome alignment at mitotic metaphase: balanced forces or smart kinetochores? In: Warner FD, Mcintosh JR (eds) Cell movement, vol 2. Kinesin, dynein and microtubule dynamics. Alan R Liss, New York, pp 421–430

    Google Scholar 

  • Mitchison TJ (1989b) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol 109:637–652

    Article  PubMed  CAS  Google Scholar 

  • Mitchison TJ, Kirschner MW (1984a) Microtubule assembly nucleated by isolated centrosomes. Nature 312:232–237

    Article  PubMed  CAS  Google Scholar 

  • Mitchison TJ, Kirschner MW (1984b) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  PubMed  CAS  Google Scholar 

  • Mitchison TJ, Kirschner MW (1985a) Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. J Cell Biol 101:755–765

    Article  PubMed  CAS  Google Scholar 

  • Mitchison TJ, Kirschner MW (1985b) Properties of the kinetochore in vitro. II. Microtubule capture and ATP dependent translocation. J Cell Biol 101:766–777

    Article  PubMed  CAS  Google Scholar 

  • Mitchison TJ, Evans L, Schulze E, Kirschner MW (1986) Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45:515–527

    Article  PubMed  CAS  Google Scholar 

  • Mittal B, Sanger JM, Sanger JW (1987) Visualization of myosin in living cells. J Cell Biol 105:1753–1760

    Article  PubMed  CAS  Google Scholar 

  • Molé-Bajer J (1975) The role of centrioles in the development of the astral spindle (newt). Cytobios 13:117–140

    Google Scholar 

  • Nicklas RB (1971) Mitosis. In: Prescott DM, Goldstein L, McConkey E (eds) Advances in cell biology, vol 2. Appleton-Century-Crofts, New York, pp 225–297

    Google Scholar 

  • Nunnally MH, D’Angelo, JM, Craig SW (1980) Filamin concentration in cleavage furrow and midbody region: frequency of occurrence compared with that of alpha-actinin and myosin. J Cell Biol 87:219–226

    Article  PubMed  CAS  Google Scholar 

  • Ohta K, Toriyama M, Endo S, Sakai H (1988) Localization of mitotic-apparatus-associated 51-kD protein in unfertilized and fertilized sea urchin eggs. Cell Motil Cytoskelet 10: 496–505

    Article  CAS  Google Scholar 

  • Ohta K, Toriyama M, Miyazaki M, Murofushi H, Hosoda S, Endo S, Sakai H (1990) The mitotic apparatus-associated 51-kDa protein from sea urchin eggs is a GTP-binding protein and is immunologically related to yeast polypeptide elongation factor la. J Biol Chem 265:3240–3247

    PubMed  CAS  Google Scholar 

  • Östergren G (1951) The mechanism of co-orientation in bivalents and multivalents. The theory of orientation by pulling. Hereditas 37:85–156

    Article  Google Scholar 

  • Paschal BM, Vallee RB (1987) Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330:181–183

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD, Tippit DH (1978) The diatom spindle in perspective. Cell 14:455–467

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD, Tippit DH, Porter KR (1982) Rethinking mitosis. Cell 29:729–744

    Article  PubMed  CAS  Google Scholar 

  • Pratt MM, Otter T, Salmon ED (1980) Dynein-like Mg2+-ATPase in mitotic spindles isolated from sea urchin embryos (Strongylocentrotus droebachiensis). J Cell Biol 86:738–745

    Article  PubMed  CAS  Google Scholar 

  • Rappaport R (1961) Experiments concerning the cleavage stimulus in sand dollar eggs. J Exp Zool 148:81–89

    Article  PubMed  CAS  Google Scholar 

  • Rappaport R (1967) Cell division: direct measurement of maximum tension exerted by furrow of echinoderm eggs. Science 156:1241–1243

    Article  PubMed  CAS  Google Scholar 

  • Rappaport R (1969) Division of isolated furrows and furrow fragments in invertebrate eggs. Exp Cell Res 56:87–91

    Article  PubMed  CAS  Google Scholar 

  • Rappaport R (1971) Cytokinesis in animal cells. Int Rev Cytol 31:169–213

    Article  PubMed  CAS  Google Scholar 

  • Rappaport R (1973) On the rate of the cleavage stimulus in sand dollar eggs. J Exp Zool 183:115–120

    Article  Google Scholar 

  • Rebhun LI, Palazzo RE (1988) In vitro reactivation of anaphase B in isolated spindles of the sea urchin egg. Cell Motil Cytoskelet 10:197–209

    Article  CAS  Google Scholar 

  • Rieder CL (1981) The structure of cold-stable kinetoehore fiber in metaphase PtK1 cells. Chromosoma 84:145–158

    Article  PubMed  CAS  Google Scholar 

  • Rieder CL (1982) The formation, structure and composition of the mammalian kinetoehore and kinetoehore fiber. Int Rev Cytol 79:1–57

    Article  PubMed  CAS  Google Scholar 

  • Rieder CL, Alexander SP (1990) Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol 110:81–95

    Article  PubMed  CAS  Google Scholar 

  • Roos U-P (1976) Light and electron microscopy of rat kangaroo cells in mitosis. III. Patterns of chromosome behavior during prometaphase. Chromosoma 54:363–385

    Article  PubMed  CAS  Google Scholar 

  • Sakai H (1978a) Isolated mitotic apparatus and chromosome motion. Int Rev Cytol 55:23–48

    Article  CAS  Google Scholar 

  • Sakai H (1978b) Induction of chromosome motion in the isolated mitotic apparatus as a function of microtubules. In: Dirkson ER, Prescott DM, Fox CF (eds) Cell reproduction: in honor of Daniel Mazia. Academic Press, New York, pp 425–432

    Google Scholar 

  • Sakai H, Hiramoto Y, Kuriyama R (1975) The glycerol-isolated mitotic apparatus: a response to porcine brain tubulin and induction of chromosome motion. Dev Growth Differ 17:265–274

    Article  CAS  Google Scholar 

  • Sakai H, Mabuchi I, Shimoda S, Kuriyama R, Ogawa K, Mohri H (1976) Induction of chromosome motion in the glycerol-isolated mitotic apparatus: nucleotide specificity and effects of antidynein and myosin sera on the motion. Dev Growth Differ 18:211–219

    Article  CAS  Google Scholar 

  • Salmon ED, McKeel M, Hays T (1984a) The rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine. J Cell Biol 99:1066–1075

    Article  PubMed  CAS  Google Scholar 

  • Salmon ED, Leslie RJ, Saxton WM, Karow ML, Mcintosh JR (1984b) Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J Cell Biol 99:2165–2174

    Article  PubMed  CAS  Google Scholar 

  • Sammak PJ, Borisy GG (1988) Direct observation of microtubule dynamics in living cells. Nature 332:724–726

    Article  PubMed  CAS  Google Scholar 

  • Sanger JM, Sanger JW (1980) Banding and polarity of actin filaments in interphase and cleaving cells. J Cell BioL86:568–575

    Article  PubMed  CAS  Google Scholar 

  • Saxton WM, Mcintosh JR (1987) Interzone microtubule behavior in late anaphase and telophase spindles. J Cell Biol 105:875–886

    Article  PubMed  CAS  Google Scholar 

  • Schatten H, Walter M, Mazia D, Biessmann H, Paweletz N, Coffe G, Schatten G (1987) Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes. Proc Natl Acad Sci USA 84:8488–8492

    Article  PubMed  CAS  Google Scholar 

  • Scholey JM, Neighbors B, Mcintosh JR, Salmon ED (1985a) Isolation of microtubules and a dynein-like MgATPase from unfertilized sea urchin eggs. J Biol Chem 259:6516–6525

    Google Scholar 

  • Scholey JM, Porter ME, Grissom PM, Mcintosh JR (1985b) Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle. Nature 318:483–486

    Article  PubMed  CAS  Google Scholar 

  • Schroeder TE (1968) Cytokinesis: filaments in the cleavage furrow. Exp Cell Res 53:272–276

    Article  PubMed  CAS  Google Scholar 

  • Schroeder TE (1970) The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B. Z Zellforsch Mikrosk Anat 109:431–449

    Article  CAS  Google Scholar 

  • Schroeder TE (1972) The contractile ring. II. Determining its brief existence, volumetric changes, and vital role in cleaving Arbacia eggs. J Cell Biol 53:419–434

    Article  PubMed  CAS  Google Scholar 

  • Schroeder TE (1975) Dynamics of the contractile ring. In: Inoué S, Stephens RE (eds) Molecules and cell movement. Raven, New York, pp 305–334

    Google Scholar 

  • Schroeder TE (1986) The egg cortex in early development of sea urchins and starfish. In: Browder LW (ed) Developmental biology, vol 2. Plenum, New York, pp 59–100

    Google Scholar 

  • Schroeder TE (1987) Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions. Dev Biol 124:9–22

    Article  PubMed  CAS  Google Scholar 

  • Schroeder TE, Otto J J (1988) Immunofluorescent analysis of actin and myosin in isolated contractile rings of sea urchin eggs. Zool Sci 5:713–725

    CAS  Google Scholar 

  • Schulze E, Kirschner MW (1986) Microtubule dynamics in interphase cells. J Cell Biol 102:1020–1031

    Article  PubMed  CAS  Google Scholar 

  • Schulze E, Kirschner MW (1988) New features of microtubule behavior observed in vivo. Nature 334:356–359

    Article  PubMed  CAS  Google Scholar 

  • Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59:421–432

    Article  PubMed  CAS  Google Scholar 

  • Sluder G, Rieder CL (1985) Experimental separation of pronuclei in fertilized sea urchin eggs: chromosomes do not organize a spindle in the absence of centrosomes. J Cell Biol 100:897–903

    Article  PubMed  CAS  Google Scholar 

  • Soltys BJ, Borisy GG (1985) Polymerization of tubulin in vivo: direct evidence for assembly onto microtubule ends and from centrosomes. J Cell Biol 100:1682–1689

    Article  PubMed  CAS  Google Scholar 

  • Steffen W, Fuge H, Dietz R, Bastmeyer M, Muller G (1986) Aster-free spindle poles in insect spermatocytes: evidence for chromosome-induced spindle formation? J Cell Biol 102:1679–1687

    Article  PubMed  CAS  Google Scholar 

  • Swann MM, Mitchison JM (1953) Cleavage of sea-urchin eggs in colchicine. J Exp Biol 35:506–513

    Google Scholar 

  • Tilney LG, Marsland D (1969) A fine structural analysis of cleavage induction and furrowing in the eggs of Arbacia punctulata. J Cell Biol 44:170–184

    Article  Google Scholar 

  • Toriyama M, Ohta K, Endo S, Sakai H (1987) 51k Protein, a component of microtubule-organizing granules (MTOGs) in the mitotic apparatus involving in aster formation in vitro. Cell Motil Cytoskelet 9:117–128

    Article  Google Scholar 

  • Usui N, Yoneda M (1982) Ultrastructural basis of the tension increase in sea urchin eggs prior to cytokinesis. Dev Growth Differ 24:453–465

    Article  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  • Vandre DD, Borisy GG (1989) The centrosome cycle in animal cells. In: Hyams JS, Brinkley BR (eds) Mitosis. Molecules and mechanisms. Academic Press, New York, pp 39–75

    Google Scholar 

  • Vigers, GPA, Coue M, Mcintosh JR (1988) Fluorescent microtubules break up under illumination. J Cell Biol 107:1011–1024

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth P, Salmon ED (1986) Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching. J Cell Biol 102:1032–1038

    Article  PubMed  CAS  Google Scholar 

  • Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, Salmon ED (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448

    Article  PubMed  CAS  Google Scholar 

  • Wallraffe E, Schleicher M, Modersitzki M, Rieger D, Isenberg G, Gerisch G (1986) Selection of Dyctiostelium mutants defective in cytoskeletal proteins: use of an antibody that binds to the ends of α-actinin rods. EMBO J 5:61–67

    Google Scholar 

  • Weisenberg R, Taylor EW (1968) Studies on ATPase activity of sea urchin eggs and the isolated mitotic apparatus. Exp Cell Res 53:372–384

    Article  CAS  Google Scholar 

  • Witt PL, Ris H, Borisy GG (1981) Structure of kinetochore fibers: microtubule continuity and intermicrotubule bridges. Chromosoma 83:523–540

    Article  PubMed  CAS  Google Scholar 

  • Wordeman L, Cande WZ (1987) Reactivation of spindle elongation in vitro is correlated with the phosphorylation of a 205 kD spindle-associated protein. Cell 50:535–543

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Fukunaga K, Tanaka E, Miyamoto E (1983) Ca2+- and calmodulin-dependent phosphorylation of microtubule-associated protein 2 and tau factor, and inhibition of microtubule assembly. J Neurochem 41:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Yanagida T, Arata T, Oosawa F (1985) Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature 316:366–369

    Article  PubMed  CAS  Google Scholar 

  • Yoneda M, Dan K (1972) Tension at the surface of the dividing sea-urchin egg. J Exp Biol 57:575–587

    PubMed  CAS  Google Scholar 

  • Yonemura S (1989) Morphological and biochemical analyses of the cortical cytoskeleton and of the contractile ring in the sea urchin egg. Thesis, University of Tokyo

    Google Scholar 

  • Yonemura S, Kinoshita S (1986) Actin filament organization in the sand dollar egg cortex. Dev Biol 115:171–183

    Article  CAS  Google Scholar 

  • Yonemura S, Mabuchi I, Tsukita S (1991) Mass isolation of cleavage furrows from dividing sea urchin eggs. J Cell Sci 100:73–84

    Google Scholar 

  • Yumura S, Fukui Y (1985) Reversible cyclic AMP-dependent change in distribution of myosin thick filaments in Dictyostelium. Nature 314:194–196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mabuchi, I., Itoh, T.J. (1992). Molecular Mechanisms of Mitosis and Cytokinesis. In: Sugi, H. (eds) Muscle Contraction and Cell Motility. Advances in Comparative and Environmental Physiology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76927-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76927-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76929-0

  • Online ISBN: 978-3-642-76927-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics