Skip to main content

Mechanisms of Cytoplasmic Streaming and Amoeboid Movement

  • Chapter
Muscle Contraction and Cell Motility

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 12))

Abstract

The molecular mechanism of the generation of motive force by actomyosin has been studied most extensively in skeletal muscle. However, the skeletal muscle is a rather highly specialized example of such systems. It is becoming evident that actomyosin is commonly distributed in nonmuscle cells, including plant cells, although the extent of the intracellular organization of the actomyosin molecules is less significant in nonmuscle cells than in skeletal muscle. Cytoplasmic streaming can be observed in a wide variety of plant cells. The mode and the speed of the streaming vary considerably among cells (Kamiya 1959). One of the most important physiological roles of cytoplasmic streaming is the intracellular transport of molecules and organelles in plant cells. Studies on cytoplasmic streaming were started about 200 years ago by Corti (see Kamiya 1959). Systematic analysis of the mechanism of motive-force generation was initiated in Characeae cells and in the plasmodium of the true slime mold, Physarum, by Kamiya and his coworkers. At present, the mechanism of motiveforce generation for cytoplasmic streaming is attributed to actomyosin in most plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach F, Wohlfarth-Bottermann K-E (1986) Successive contraction-relaxation cycles experimentally induced in cell-free models of Physarum polycephalum. Eur J Cell Biol 42:111–117

    CAS  Google Scholar 

  • Adams RJ, Pollard TD (1986) Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I. Nature 322:754–756

    Article  PubMed  CAS  Google Scholar 

  • Albanesi JP, Hammer JA III, Korn ED (1983) The interaction of F-actin with phosphorylated and unphosphorylated myosins IA and IB from Acanthamoeba castellanii. J Biol Chem 258:10176–10181

    PubMed  CAS  Google Scholar 

  • Albanesi JP, Fujisaki H, Korn ED (1985) A kinetic model for the molecular basis of the contractile activity of Acanthamoeba myosins IA and IB. J Biol Chem 260:11174–11179

    PubMed  CAS  Google Scholar 

  • Allen RD, Cowden RR (1962) Syneresis in ameboid movement: its localization by interference microscopy and its significance. J Cell Biol 12:185–189

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Cooledge JW, Hall PJ (1960) Streaming in cytoplasm dissociated from the giant amoeba, Chaos chaos. Nature 187:896–899

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Francis DW, Nakajima H (1965) Cyclic birefringence changes in pseudopods of Chaos carolinensis revealing the localization of the motive force in pseudopod extension. Proc Natl Acad Sci USA 54:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Alléra A, Beck R, Wohlfarth-Bottermann KE (1971) Weitreichende fibrillare Protoplasmadifferenzierungen und ihre Bedeutung fÃŒr die Protoplasmaströmung. VIII. Identifizierung der Plasmafilamente von Physarum polycephalum als F-Actin durch Anlagerung von heavy meromyosin in situ. Cytobiologie 4:437–449

    Google Scholar 

  • Andre E, Brink M, Gerisch G, Isenberg G, Noegel A, Schleicher M, Segall JE, Wallraff E (1989) A Dictyostelium mutant deficient in Severin, an F-actin fragmenting protein, shows normal motility and Chemotaxis. J Cell Biol 108:985–995

    Article  PubMed  CAS  Google Scholar 

  • Barak LS, Yocum RR, Nothnagel EA, Webb WW (1980) Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-l,3-diazole-phallacidin. Proc Natl Acad Sci USA 77(2):980–984

    Article  PubMed  CAS  Google Scholar 

  • Barry WH (1968) Coupling of excitation and cessation of cyclosis in Nnitella: role of divalent cations. J Cell Physiol 72(3): 153–160

    Article  PubMed  CAS  Google Scholar 

  • Berlot CH, Spudich JA, Devreotes PN (1985) Chemoattractant-elicited increases in myosin phosphorylation in Dictyostelium. Cell 43:307–314

    Article  PubMed  CAS  Google Scholar 

  • Berlot CH, Devreotes PN, Spudich JA (1987) Chemottractant-elicited increases in Dictyostelium myosin phosphorylation are due to changes in myosin localization and increases in kinase activity. J Biol Chem 262:3918–3926

    PubMed  CAS  Google Scholar 

  • Bradley MO (1973) Microfilaments and cytoplasmic streaming, inhibition of streaming with cytochalasin. J Cell Sci 12:327–343

    PubMed  CAS  Google Scholar 

  • Brown SS, Yamamoto K, Spudich JA (1982) A 40,000–dalton protein from Dictyostelium discoideum affects assembly properties of actin in a Ca2+-dependent manner. J Cell Biol 93:205–210

    Article  PubMed  CAS  Google Scholar 

  • Chen JCW, Kamiya N (1975) Localization of myosin in the internodal cell of Nitella as suggested by differential treatment with N-ethylmaleimide. Cell Struct Funct 1:1–9

    Article  CAS  Google Scholar 

  • Chen JCW, Kamiya N (1981) Differential heat treatment of the Nitella internodal cell and its relation to cytoplasmic streaming. Cell Struct Funct 6:201–207

    Article  Google Scholar 

  • Clarke M, Spudich JA (1974) Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. J Mol Biol 86:209–222

    Article  PubMed  CAS  Google Scholar 

  • Collins JH, Korn ED (1980) Actin activation of Ca2+-sensitive Mg2+-ATPase activity of Acanthamoeba myosin II is enhanced by dephosphorylation of its heavy chains. J Biol Chem 255:8011–8014

    PubMed  CAS  Google Scholar 

  • Collins JH, Korn ED (1981) Purification and characterization of actin-activatable, Ca2+- sensitive myosin II from Acanthamoeba. J Biol Chem 256:2586–2595

    PubMed  CAS  Google Scholar 

  • Collins JH, Kuznicki J, Bowers B, Korn ED (1982) Comparison of the actin binding and filament formation properties of phosphorylated and dephosphorylated Acanthamodeba myosin II. Biochemistry 21:6910–6915

    Article  PubMed  CAS  Google Scholar 

  • Condeelis J, Vahey M, Carboni JM, DeMey J, Ogihara S (1984) Properties of the 120,000- and 95,000-dalton actin-binding proteins from Dictyostelium discoideum and their possible functions in assembling the cytoplasmic matrix. J Cell Biol 99:119s-126s

    Article  PubMed  CAS  Google Scholar 

  • Condeelis J, Hall A, Bresnick A, Warren V, Hock R, Bennett H, Ogihara S (1988) Actin polymerization and pseudopod extension during amoeboid Chemotaxis. Cell Motil Cytoskeleton 10:77–90

    Article  PubMed  CAS  Google Scholar 

  • Cote GP, Collins JH, Korn ED (1981) Identification of three phosphorylation sites on each heavy chain of Acanthamoeba myosin II. J Biol Chem 256:12811–12816

    PubMed  CAS  Google Scholar 

  • Cote GP, Albanesi JP, Ueno T, Hammer JA III, Korn ED (1985) Purification from Dictyostelium discoideum of a low-molecular-weight myosin that resembles myosin I from Acanthamoeba castellanil. J Biol Chem 260:4543–4546

    PubMed  CAS  Google Scholar 

  • Dharmawardhane S, Warren V, Hall AL, Condeelis J (1989) Changes in the association of actin-binding proteins with the actin cytoskeleton during chemotactic stimulation of Dictyostelium discoideum. Cell Motil Cytoskeleton 13:57–63

    Article  PubMed  CAS  Google Scholar 

  • Fechheimer M (1987) The Dictyostelium discoideum 30000–dalton protein is an actin filament-bundling protein that is selectively present in filopodia. J Cell Biol 104:1539–1551

    Article  PubMed  CAS  Google Scholar 

  • Fujisaki H, Albanesi JP, Korn ED (1985) Experimental evidence for the contractile activities of Acanthamoeba myosins IA and IB. J Biol Chem 260:11183–11189

    PubMed  CAS  Google Scholar 

  • Fukui Y, Yumura S (1986) Actomyosin dynamics in chemotactic amoeboid movement of Dictyostelium. Cell Motil Cytoskeleton 6:662–673

    Article  CAS  Google Scholar 

  • Fukui Y, Lynch TJ, Brzeska H, Korn ED (1989) Myosin I is located at the leading edge of locomoting Dictyostelium amoebae. Nature 341:328–331

    Article  PubMed  CAS  Google Scholar 

  • Furuhashi K, Hatano S (1989) A fragmin-like protein from Plasmodium of Physarum polycephalum that severs F-actin and caps the barbed end of F-actin in a Ca2+-sensitive way. J Biochem 106:311–318

    PubMed  CAS  Google Scholar 

  • Futrelle RP, Traut J, McKee WG (1982) Cell behavior in Dictyostelium discoideum: preaggregation response to localized cyclic AMP pulses. J Cell Biol 92:807–821

    Article  PubMed  CAS  Google Scholar 

  • Gadasi H, Korn ED (1980) Evidence for differential intracellular localization of the Acanthamoeba myosin isoenzymes. Nature 286:452–456

    Article  PubMed  CAS  Google Scholar 

  • Gerisch G, Segall JE, Wallraff E (1989) Isolation and behavioral analysis of mutants defective in cytoskeletal proteins. Cell Motil Cytoskeleton 14:75–79

    Article  PubMed  CAS  Google Scholar 

  • Gordon DJ, Boyer JL, Korn ED (1977) Comparative biochemistry of non-muscle actins. J Biol Chem 252:8300–8309

    PubMed  CAS  Google Scholar 

  • Götz von Olenhusen K, Wohlfarth-Bottermann KE (1979) Evidence for actin transformation during the contraction-relaxation cycle of cytoplasmic actomyosin: cycle blockade by phalloidin injection. Cell Tissue Res 196:455–470

    Article  Google Scholar 

  • Gratecos D, Fischer EH (1974) Adenosine 5′-0-(3-thiotriphosphate) in the control of Phosphorylase activity. Biochem Biophys Res Commun 58:960–967

    Article  PubMed  CAS  Google Scholar 

  • Griffith LM, Downs SM, Spudich JA (1987) Myosin light chain kinase and myosin light chain phosphatase from Dictyostelium: effects of reversible phosphorylation on myosin structure and function. J Cell Biol 104:1309–1323

    Article  PubMed  CAS  Google Scholar 

  • Hall A, Schlein A, Condeelis J (1988) Relationship of pseudopod extension to chemotactic hormone-induced actin polymerization in amoeboid cells. J Cell Biochem 37:285–299

    Article  PubMed  CAS  Google Scholar 

  • Hammer JA III, Albanesi JP, Korn ED (1983) Purification and characterization of a myosin I heavy chain kinase from Acanthamoeba castellanii. J Biol Chem 258:10168–10175

    PubMed  CAS  Google Scholar 

  • Hasegawa T, Takahashi S, Hayashi H, Hatano S (1980) Fragmin: a calcium ion sensitive egulatory factor on the formation of actin filaments. Biochemistry 19:2677–2683

    Article  PubMed  CAS  Google Scholar 

  • Hatano S (1970) Specific effect of Ca2+ on movement of plasmodial fragment obtained by affeine treatment. Exp Cell Res 61:199–203

    Article  PubMed  CAS  Google Scholar 

  • Hatano S, Oosawa F (1966) Isolation and characterization of Plasmodium actin. Biochim Biophys Acta 127:488–498

    Article  PubMed  CAS  Google Scholar 

  • Hatano S, Oosawa F (1971) Movement of cytoplasm in plasmodial fragment obtained by affeine treatment. I. Its Ca+ sensitivity. J Physiol Soc Jpn 33:589–590

    CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1989) Myosin associated with the surfaces of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. J Cell Sci 94:319–325

    Google Scholar 

  • Higashi-Fujime S (1980) Active movement in vitro of bundles of microfilaments isolated from Nitella cell. J Cell Biol 87:569–578

    Article  PubMed  CAS  Google Scholar 

  • Isenberg G, Wohlfarth-Bottermann (1976) Transformation of cytoplasmic actin: importance for the organization of the contractile gel reticulum and the contraction-relaxation cycle of cytoplasmic actomyosin. Cell Tissue Res 173:495–528

    Article  PubMed  CAS  Google Scholar 

  • Isenberg G, Aebi U, Pollard TD (1980) An actin-binding protein from Acanthamoeba regulates ctin filament polymerization and interactions. Nature 288:455–459

    Article  PubMed  CAS  Google Scholar 

  • Ishigami M (1986) Dynamic aspects of the contractile system in Physarum Plasmodium. 1. Changes in spatial organization of the cytoplasmic fibrils according to the contraction- relaxation cycle. Cell Motil Cytoskeleton 6:439–447

    Article  Google Scholar 

  • Ishigami M, Hatano S (1986) Dynamic aspects of the contractile system in Physarum Plasmodium. II. Contractility of Triton cell models in accordance with the contraction and relaxation phases of the plasmodia. Cell Motil Cytoskeleton 6:448–457

    Article  CAS  Google Scholar 

  • Ishigami M, Nagai R, Kuroda K (1981) A polarized light and electron microscopic study of the birefringent fibrils in Physarum plasmodia. Protoplasma 109:91–102

    Article  Google Scholar 

  • Ishigami M, Kuroda K, Hatano S (1987) Dynamic aspects of the contractile system in Physarum Plasmodium. III. Cyclic contraction-relaxation of the plasmodial fragment in accordance with the generation-degeneration of cytoplasmic actomyosin fibrils. J Cell Biol 105:381–386

    Article  PubMed  CAS  Google Scholar 

  • Kamitsubo E (1966) Motile protoplasmic fibrils in cells of Characeae. II. Linear fibrillar structure and its bearing on protoplasmic streaming. Proc Jpn Acad 42:640–643

    Google Scholar 

  • Kamitsubo E (1972) A “window technique” for detailed observation of characean cytoplasmic streaming. Expl Cel Res 74:613–616

    Article  CAS  Google Scholar 

  • Kamitsubo E (1981) Effect of supraoptimal temperature on the function of the subcortical fibrils and an endoplasmic factor in Nitella internodes. Protoplasma 109:3–12

    Article  Google Scholar 

  • Kamiya N (1940) The control of protoplasmic streaming. Science 92:462–463

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N (1959) Protoplasmic streaming. Protoplasmatologia VIII 3a. Springer, Wien

    Google Scholar 

  • Kamiya N (1973) Contractile characteristics of the myxomycete Plasmodium. Proc IV Int Biophysics Congr, Moscow, pp 447–465

    Google Scholar 

  • Kamiya N, Kuroda K (1956) Velocity distribution of the protoplasmic streaming in Nitella cells. Bot Mag., Tokyo 69:544–554

    Google Scholar 

  • Kamiya N, Kuroda K (1958) Studies on the velocity distribution of the protoplasmic streaming in the myxomycete Plasmodium. Protoplasma 49:1–4

    Article  Google Scholar 

  • Kamiya N, Allen RD, Zeh R (1972) Contractile properties of the slime mold strand. Acta Protozoologica 11:113–124

    Google Scholar 

  • Kato T, Tonomura Y (1975) Physarum tropomyosin-troponin complex. Isolation and properties. J Biochem 78:583–588

    PubMed  CAS  Google Scholar 

  • Kato T, Tonomura Y (1977a) Uptake of calcium ions into microsomes isolated from Physarum polycephalum. J Biochem 81:207–213

    PubMed  CAS  Google Scholar 

  • Kato T, Tonomura Y (1977b) Identification of myosin in Nitella flexilis. J Biochem 82: 777–782

    PubMed  CAS  Google Scholar 

  • Kersey YM, Wessels NK (1976) Localization of actin filaments in internodal cells of characean algae. J Cell Biol 68:264–275

    Article  PubMed  CAS  Google Scholar 

  • Kersey YM, Hepler PK, Palevitz BA, Wessels NK (1976) Polarity of actin filaments in characean algae. Proc Natl Acad Sci USA 73:165–167

    Article  PubMed  CAS  Google Scholar 

  • Kessler D (1972) On the location of myosin in the myxomycete Physarum polycephalum and its possible function in cytoplasmic streaming. J Mechanochem Cell Motil 1:125–137

    PubMed  CAS  Google Scholar 

  • Kessler D, Nachmias VT, Loewy AG (1976) Actomyosin content of Physarum plasmodia and detection of immunological cross-reactions with myosins from related species. J Cell Biol 69:393–406

    Article  PubMed  CAS  Google Scholar 

  • Knecht DA, Loomis WF (1987) Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science 236:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Kohama K (1987) Ca-inhibitory myosins: their structure and function. Adv Biophys 23:149–182

    Article  PubMed  CAS  Google Scholar 

  • Kohama K, Kendrick-Jones J (1986) The inhibitory Ca2+-regulation of the actin-activated Mg-ATPase activity of myosin from Physarum polycephalum plasmodia. J Biochem 99:1433–1446

    PubMed  CAS  Google Scholar 

  • Kohama K, Kohama T (1984) Myosin confers inhibitory Ca2+-sensitivity on actin-myosin-ATP interaction of Physarum polycephalum Plasmodium under physiological conditions. Proc Jpn Acad 60:435–439

    Article  CAS  Google Scholar 

  • Kohama K, Kobayashi K, Mitani S (1980) Effect of Ca ion and ADP on superprecipitation of myosin B from slime mold, Physarum polycephalum. Proc Jpn Acad 56:591–596

    Article  CAS  Google Scholar 

  • Kohama K, Takano-Ohmuro H, Tanaka T, Yamaguchi Y, Kohama T (1986) Isolation and characterization of myosin from amoebae of Physarum polycephalum. J Biol Chem 261:8022–8027

    PubMed  CAS  Google Scholar 

  • Kohno T, Shimmen T (1988) Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2+. J Cell Biol 106:1539–1543

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Chaen S, Shimmen T (1990) Characterization of the translocator associated with pollen tube organelles. Protoplasma 154:179–183

    Article  Google Scholar 

  • Koop HU, Kiermayer O (1980a) Protoplasmic streaming in the giant unicellular green alga Acetabularia mediterranea. I. Formation of intracellular transport systems in the course of cell differentiation. Protoplasma 102:147–166

    Article  Google Scholar 

  • Koop HU, Kiermayer O (1980b) Protoplasmic streaming in the giant unicellular green alga Acetabularia mediterranea. II. Differential sensitivity of movement systems to substances acting on microfilaments and microtubuli. Protoplasma 102:295–306

    Article  Google Scholar 

  • Korn ED, Wright PL (1973) Macromolecular composition of an amoeba plasma membrane. J Biol Chem 248:439–447

    PubMed  CAS  Google Scholar 

  • Kuczmarski ER, Spudich JA (1980) Regulation of myosin self-assembly: phosphorylation of Dictyostelium heavy chain inhibits formation of thick filaments. Proc Natl Acad Sci USA 77:7292–7296

    Article  PubMed  CAS  Google Scholar 

  • Kuczmarski ER, Tafuri SR, Parysek LM (1987) Effect of heavy chain phosphorylation on the polymerization and structure of Dictyostelium myosin filaments. J Cell Biol 105: 2989–2997

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K (1983) Cytoplasmic streaming in characean cells cut open by microsurgery. Proc Jpn Acad (B) 59:126–130

    Article  Google Scholar 

  • Kuroda K, Kamiya N (1975) Active movement of Nitella chloroplast in vitro. Proc Jpn Acad 51:774–777

    Google Scholar 

  • Kuroda K, Manabe E (1983) Microtubule-associated cytoplasmic streaming in Caulerpa. Proc Jpn Acad 59:131–134

    Article  Google Scholar 

  • Kuznicki J, Albanesi JP, Cote GP, Korn ED (1983) Supramolecular regulation of the actin- activated ATPase activity of filaments of Acanthamoeba myosin II. J Biol Chem 258:6011–6014

    PubMed  CAS  Google Scholar 

  • Lengthfield A, Low I, Wieland TH, Danka P, Hasselbachi W (1974) Interaction of phalloidin with actin. Proc Natl Acad Sci USA 71:2803–2807

    Article  Google Scholar 

  • Lozanne AD, Spudich JA (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236:1086–1091

    Article  PubMed  Google Scholar 

  • Ma YZ, Yen LF (1989) Actin and myosin in pea tendrils. Plant Physiol 89:586–589

    Article  PubMed  CAS  Google Scholar 

  • Malchow D, Böhme R, Rahmsdorf HJ (1981) Regulation of phosphorylation of myosin heavy chain during the chemotactic response of Dictyostelium cells. Eur J Biochem 117:213–218

    Article  PubMed  CAS  Google Scholar 

  • Manstein DJ, Titus MA, Lozanne AD, Spudich JA (1989) Gene replacement in Dictyostelium: generation of myosin null mutants. EMBO J 8:923–932

    PubMed  CAS  Google Scholar 

  • Maruta H, Korn ED (1977a) Acanthamoeba myosin II. J Biol Chem 252:6501–6509

    PubMed  CAS  Google Scholar 

  • Maruta H, Korn ED (1977b) Acanthamoeba cofactor protein is a heavy chain kinase required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. J Biol Chem 252:8329–8332

    PubMed  CAS  Google Scholar 

  • Maruta H. Gadashi H. Collins JH, Korn ED (1979) Multiple forms of Acanthamoeba myosin I. J Biol Chem 254:3624–3630

    PubMed  CAS  Google Scholar 

  • Maruta H, Baltes W, Dieter P, Marme D, Gerisch G (1983) Myosin heavy chain kinase inactivated by Ca2+/calmodulin from aggregating cells of Dictyostelium discoideum. EMBO J 2:535–542

    PubMed  CAS  Google Scholar 

  • Mast SO (1926) Structure, movement, locomotion, and stimulation in Amoeba. J Morphol Physiol 41:535–542

    Article  Google Scholar 

  • Matsumura F, Yoshimoto Y, Kamiya N (1980) Tension generation by actomyosin thread from a non-muscle system. Nature 285:169–171

    Article  PubMed  CAS  Google Scholar 

  • McRobbie SJ, Newell PC (1984) Chemoattractant-mediated changes in cytoskeletal actin of cellular slime moulds. J Cell Sci 68:139–151

    PubMed  CAS  Google Scholar 

  • Menzel D, Elsner-Menzel CE (1989) Co-localization of particle transport with microtubules in cytoplasmic exudates of the siphonous green alga Bryopsis. Bot Acta 102:241–248

    Google Scholar 

  • Menzel D, Schliwa M (1986a) Motility in the siphonous green alga Bryopsis. I. Spatial organization of the cytoskeleton and organelle movements. Eur J Cell Biol 40:275–285

    PubMed  CAS  Google Scholar 

  • Menzel D, Schliwa M (1986b) Motility in the siphonous green alga Bryopsis. II. Chloroplast movement requires organized arrays of both microtubules and actin filaments. Eur J Cell Biol 40:286–295

    PubMed  CAS  Google Scholar 

  • Miyata H, Bowers B, Korn ED (1989) Plasma membrane association of Acanthamoeba myosin I. J Cell Biol 109:1519–1528

    Article  PubMed  CAS  Google Scholar 

  • Morgan M, Perry SV, Ottaway J (1976) Myosin light chain phosphatase. Biochem J 157: 687–697

    PubMed  CAS  Google Scholar 

  • Mori Y, Ueda T, Kobatake Y (1987) NAD(P)H oscillation in relation to the rhythmic contraction in the Physarum Plasmodium. Protoplasma 139:141–144

    Article  CAS  Google Scholar 

  • Nachmias VT, Asch A (1976) A calcium-sensitive preparation from Physarum polycephalum. Biochemistry 15:4273–4278

    Article  PubMed  CAS  Google Scholar 

  • Nachmias VT, Fukui Y, Spudich JA (1989) Chemoattractant-elicited translocation of myosin in motile Dictyostelium. Cell Motil Cytoskeleton 13:158–169

    Article  PubMed  CAS  Google Scholar 

  • Nagai R, Hayama T (1979) Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells. J Cell Sci 36:121–136

    PubMed  CAS  Google Scholar 

  • Nagai R, Kamiya N (1977) Differential treatment of Chara cells with cytochalasin B with special reference to its effect on cytoplasmic streaming. Exp Cell Res 108:231–237

    PubMed  CAS  Google Scholar 

  • Nagai R, Kato T (1975) Cytoplasmic filaments and their assembly into bundles in Physarum Plasmodium. Protoplasma 86:141–158

    Article  PubMed  CAS  Google Scholar 

  • Nagai R, Rebhun L (1966) Cytoplasmic microfilaments in streaming Nitella cells. J Ultrastruct Res 14:571–589

    Article  PubMed  CAS  Google Scholar 

  • Nagai R, Yoshimoto Y, Kamiya N (1978) Cyclic production of tension force in the plasmodial strand of Physarum polycephalum and its relation to microfilament morphology. J Cell Sci 33:205–225

    PubMed  CAS  Google Scholar 

  • Nakajima H, Allen RD (1965) The changing pattern of birefringence in plasmodia of the slime mold, Physarum polycephalum. J Cell Biol 25:361–374

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Kamiya N (1985) Oscillation of cytoplasmic pH of Physarum Plasmodium in relation to motility. Cell Struct Funct 10:133–141

    Article  Google Scholar 

  • Noegel A, Witke W, Schleicher M (1987) Calcium-sensitive nonmuscle a-actinin contains EF-hand structures and highly conserved regions. FEBS Lett 221:391–396

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel EA, Webb WW (1982) Hydrodynamic models of viscous coupling between motile myosin and endoplasm in characean algae. J Cell Biol 94:444–454

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel EA, Barak LS, Sanger JW, Webb WW (1981) Fluorescence studies on modes of cytochalasin and phallotoxin action on cytoplasmic streaming in Chara. J Cell Biol 88: 364–372

    Article  PubMed  CAS  Google Scholar 

  • Ogihara S (1982) Calcium and ATP regulation of the oscillatory torsional movement in a Triton model of Physarum plasmodial strands. Exp Cell Res 138:377–384

    Article  PubMed  CAS  Google Scholar 

  • Ogihara S, Kuroda K (1979) Identification of a birefringent structure which appears and disappears in accordance with the shuttle streaming in Physarum plasmodia. Protoplasma 100:167–177

    Article  Google Scholar 

  • Ogihara S, Tonomura Y (1982) A novel 36,000-dalton actin-binding protein purified from microfilaments in Physarum plasmodia which aggregates actin filaments and blocks actin-myosin interaction. J Cell Biol 93:604–614

    Article  PubMed  CAS  Google Scholar 

  • Ogihara S, Ikebe M, Takahashi K, Tonomura Y (1983) Requirement of phosphorylation of Physarum myosin heavy chain for thick filamant formation, actin activation of Mg2+- ATPase activity, and Ca2+-inhibitory superprecipitation. J Biochem 93:205–223

    PubMed  CAS  Google Scholar 

  • Ohsuka K, Inoue A (1979) Identification of myosin in a flowering plant, Egeria densa. J Biochem 85:375–378

    PubMed  CAS  Google Scholar 

  • Osborn M, Weber K (1983) Immunocytochemistry of the acellular slime mold Physarum polycephalum. III. Distribution of myosin and the actin-modulating protein (fragmin) in sandwiched plasmodia. Eur J Cell Biol 29:179–186

    PubMed  CAS  Google Scholar 

  • Owaribe K, Izutsu K, Hatano S (1979) Cross-reactivity of antibody to Physarum actin and actins in eukaryotic cells examined by immunofluorescence. Cell Struct Funct 4:117–126

    Article  Google Scholar 

  • Ozaki K, Hatano S (1984) Mechanism of regulation of actin polymerization by Physarum profilin. J Cell Biol 98:1919–1925

    Article  PubMed  CAS  Google Scholar 

  • Ozaki K, Sugino H, Hasegawa T, Takahashi S, Hatano S (1981) Isolation and characterization of Physarum profilin. J Biochem 93:295–298

    Google Scholar 

  • Palevitz BA, Hepler PK (1975) Identification of actin in situ at the ectoplasm-endoplasm interface of Nitella. J Cell Biol 65:29–38

    Article  PubMed  CAS  Google Scholar 

  • Palevitz BA, Ash JF, Hepler PK (1974) Actin in the green alga, Nitella. Proc Natl Acad Sci USA 71:363–366

    Article  PubMed  CAS  Google Scholar 

  • Peltz G, Kuczmarski ER, Spudich JA (1981) Dictyostelium myosin: characterization of chymotryptic fragments and localization of the heavy-chain phosphorylation site. J Cell Biol 89:104–108

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD (1982) Structure and polymerization of Acanthamoeba myosin-II filaments. J Cell Biol 95:816–825

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Korn ED (1973a) Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem 248:4682–4690

    PubMed  CAS  Google Scholar 

  • Pollard TD, Korn ED (1973b) Electron microscopic identification of actin associated with isolated amoeba plasma membranes. J Biol Chem 248:448–450

    PubMed  CAS  Google Scholar 

  • Reichstein E, Korn ED (1979) Acanthamoeba profilin. J Biol Chem 254:6174–6179

    PubMed  CAS  Google Scholar 

  • Ridgway EB, Durham CH (1976) Oscillations of calcium ion concentration in Physarum polycephalum. J Cell Biol 69:223–226

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Hatano S, Sato Y (1981) Contractility and protoplasmic streaming preserved in artificially induced plasmodial fragments, the “caffeine drops”. Protoplasma 109: 187–208

    Article  CAS  Google Scholar 

  • Satoh H, Ueda T, Kobatake Y (1982) Primary oscillator of contractional rhythm in the Plasmodium of Physarum polycephalum: role of mitochondria. Cell Struct Funct 7: 275–283

    Article  Google Scholar 

  • Schleicher M, Gerisch G, Isenberg G (1984) New actin-binding proteins from Dictyostelium discoideum. EMBO J 3:2095–2100

    PubMed  CAS  Google Scholar 

  • Schleicher M, Noegel A, Schwarz T, Wallraff E, Brink M, Faix J, Gerisch G, Isenberg G (1988) A Dictyostelium mutant with severe defects in a-actinin: its characterization using cDNA probes and monoclonal antibodies. J Cell Sci 90:59–71

    PubMed  CAS  Google Scholar 

  • Shah DM, Hightower RC, Meagher RB (1982) Complete nucleotide sequence of a soybean actin gene. Proc Natl Acad Sci 79:1022–1026

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MP, Spudich JA (1983) Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303:31–35

    Article  PubMed  CAS  Google Scholar 

  • Shiina, Tazawa M (1987) Ca2+-activated CI– channel in plasmalemma of Nitellopsis obtusa. J Memb Biol 99:137–146

    Article  CAS  Google Scholar 

  • Shimmen T (1978) Dependency of cytoplasmic streaming on intracellular ATP and Mg2+ concentrations. Cell Struct Funct 3:113–121

    Article  CAS  Google Scholar 

  • Shimmen T (1988a) Cytoplasmic streaming regulated by adenine nucleotides and inorganic phosphates in Characeae. Protoplasma (Suppl) 1:3–9

    Google Scholar 

  • Shimmen T (1988b) Characean actin bundles as a tool for studying actomyosin-based motilify. Bot Mag Tokyo 101:533–544

    Article  CAS  Google Scholar 

  • Shimmen T, Tazawa M (1982) Reconstitution of cytoplasmic streaming in Characeae. Protoplasma 113:127–131

    Article  Google Scholar 

  • Shimmen T, Tazawa M (1983) Control of cytoplasmic streaming by ATP, Mg2+ and cytochalasin B in permeabilized Characeae cell. Protoplasma 115:18–24

    Article  CAS  Google Scholar 

  • Shimmen T, Yano M (1984) Active sliding movement of latex beads coated with skeletal muscle myosin on Chara actin bundles. Protoplasma 121:132–137

    Article  CAS  Google Scholar 

  • Shimmen T, Yano M (1986) Regulation of myosin sliding along Chara actin bundles by native skeletal muscle tropomyosin. Protoplasma 132:129–136

    Article  CAS  Google Scholar 

  • Sinard JH, Pollard TD (1989) The effect of heavy chain phosphorylation and solution conditions on the assembly of Acanthamoeba myosin-II. J Cell Biol 109:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Sokolov Ol, Bogatyrev VA, Turkina MV (1986) Myosin from conducting tissues of Heracleum sosnowskyi: interaction with muscle actin and formation of filaments. Fiziol Rast 33: 421–431

    CAS  Google Scholar 

  • Sonobe S, Takahashi S, Hatano S, Kuroda K (1986) Phosphorylation of Amoeba G-actin and its effect on actin polymerization. J Biol Chem 261:14837–14843

    PubMed  CAS  Google Scholar 

  • Staiger CJ, Schliwa M (1987) Actin localization and function in higher plants. Protoplasma 141:1–12

    Article  CAS  Google Scholar 

  • Stockem W, Hoffman, H-U, Gawlitta W (1982) Spatial organization and fine structure of the cortical filament layer in normal locomoting Amoeba proteus. Cell Tissue Res 221:505–519

    Article  PubMed  CAS  Google Scholar 

  • Sugino H, Hatano S (1982) Effect of fragmin on actin polymerization: evidence for enhancement of nucleation and capping of the barbed end. Cell Motil 2:457–470

    Article  PubMed  CAS  Google Scholar 

  • Sutoh K, Iwane M, Matsuzaki F, Kikuchi M, Ikai A (1984) Isolation and characterization of a high molecular weight actin-binding protein from Physarum polycephalum plasmodia. J Cell Biol 98:1611–1618

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Ogihara S, Ikebe M (1983) Morphological aspects of thiophosphorylated and dephosphorylated myosin molecules from the Plasmodium of Physarum polycephalum. J Biochem 93:1175–1183

    PubMed  CAS  Google Scholar 

  • Takeuchi Y, Yoneda M (1977) Synchrony in the rhythm of the contraction-relaxation cycle in two plasmodial strands of Physarum polycephalum. J Cell Sci 26:151–160

    PubMed  CAS  Google Scholar 

  • Tang X, Hepler PK, Scordilis SP (1989) Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide in Nicotiana pollen tubes. J Cell Sci 92:569–574

    PubMed  CAS  Google Scholar 

  • Taylor DL, Condeelis JS (1979) Cytoplasmic structure and contractility in amoeboid cells. Int Rev Cytol 56:57–144

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Helle well SB, Virgin HW, Heiple J (1979) The solation-contraction coupling hypothesis of cell movements. In: Hatano S, Ishikawa H, Sato H (eds) Cell motility: molecules and organization, University of Tokyo Press, Tokyo, pp 363–377

    Google Scholar 

  • Tazawa M, Shimmen T (1987) Cell motility and ionic relations in characean cells as revealed by internal perfusion and cell models. Int Rev Cytol 109:259–312

    Article  CAS  Google Scholar 

  • Tazawa M, Kikuyama M, Shimmen T (1976) Electric characteristics and cytoplasmic streaming of Characeae cells lacking tonoplast. Cell Struct Funct 1:165–176

    Article  CAS  Google Scholar 

  • Tominaga Y, Shimmen T, Tazawa M (1983) Control of cytoplasmic streaming by extracellular Ca2+ in permeabilized Nitella cells. Protoplasma 116:75–77

    Article  CAS  Google Scholar 

  • Tominaga Y, Muto S, Shimmen T, Tazawa M (1985) Calmodulin and Ca2+-controlled cytoplasmic streaming in characean cells. Cell Struct Funct 10:315–325

    Article  CAS  Google Scholar 

  • Tominaga Y, Wayne R, Tung HYL, Tazawa M (1987) Phosphorylation-dephosphorylation is involved in Ca2+-controlled cytoplasmic streaming of characean cells. Protoplasma 136:161–169

    Article  CAS  Google Scholar 

  • Uyemura DG, Brown SS, Spudich JA (1978) Biochemical and structural characterization of actin from Dictyostelium discoideum. J Biol Chem 253:9088–9096

    PubMed  CAS  Google Scholar 

  • Vahey M, Titus M, Trautwein R, Scordilis S (1982) Tomato actin and myosin: contractile proteins from a higher plant. Cell Motil 2:131–147

    Article  CAS  Google Scholar 

  • Vandekerckhove J, Weber K (1978) The amino acid sequence of Physarum actin. Nature 276:720–721

    Article  PubMed  CAS  Google Scholar 

  • Wallraff E, Schleicher M, Modersitzki M, Rieger D, Isenberg G, Gerisch G (1986) Selection of Dictyostelium mutants defective in cytoskeletal proteins: use of an antibody that binds to the ends of a-actinin rods. EMBO J 5:61–67

    PubMed  CAS  Google Scholar 

  • Weihing RR, Korn ED (1971) Acanthamoeba actin. Isolation and properties. Biochemistry 10:590–600

    Article  PubMed  CAS  Google Scholar 

  • Weihing RR, Korn ED (1972) Acanthamoeba actin. Composition of the peptide that contains 3-methylhistidine and a peptide that contains Ne-methyllysine. Biochemistry 11:1538–1543

    Article  PubMed  CAS  Google Scholar 

  • Wieland T (1977) Modification of actins by pallotoxins. Naturwissenschaften 64:303–309

    Article  PubMed  CAS  Google Scholar 

  • Williamson RE (1972) A light-microscope study of the action of cytochalasin B on the cells and isolated cytoplasm of the Characeae. J Cell Sci 10:811–819

    PubMed  CAS  Google Scholar 

  • Williamson RE (1974) Actin in the alga, Chara corallina. Nature 248:801–802

    Article  PubMed  CAS  Google Scholar 

  • Williamson RE (1975) Cytoplasmic streaming in Chara: a cell model activated by ATP and inhibited by cytochalasin B. J Cell Sci 17:655–668

    PubMed  CAS  Google Scholar 

  • Williamson RE (1979) Filaments associated with the endoplasmic reticulum in the streaming cytoplasm of Chara corallina. Eur J Cell Biol 20:177–183

    PubMed  CAS  Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296:647–651

    Article  PubMed  CAS  Google Scholar 

  • Williamson RE, McCurdy DW, Hurley UA, Perkin JL (1987) Actin of Chara giant internodal cells. Plant Physiol 85:268–272

    Article  PubMed  CAS  Google Scholar 

  • Wohlfarth-Bottermann KE, Fleischer M (1976) Cycling aggregation patterns of cytoplasmic F-actin coordinated with oscillating tension force generation. Cell Tissue Res 165:327–344

    Article  Google Scholar 

  • Wuestehube LJ, Luna EJ (1987) F-actin binds to the cytoplasmic surface of ponticulin, a 17-kD integral glycoprotein from Dictyostelium discoideum plasma membranes. J Cell Biol 105:1741–1751

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Pardee JD, Reidler J, Stryer L, Spudich J (1982) Mechanism of interaction of Dictyostelium Severin with actin filaments. J Cell Biol 95:711–719

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto Y, Kamiya N (1978a) Studies on contraction rhythm of the plasmodial strand II. Effect of externally applied forces. Protoplasma 95:101–109

    Article  Google Scholar 

  • Yoshimoto Y, Kamiya N (1978b) Studies on contraction rhythm of the plasmodial strand. III. Role of endoplasmic streaming in synchronization of local rhythms. Protoplasma 95: 111–121

    Article  Google Scholar 

  • Yoshimoto Y, Kamiya N (1978c) Studies on contraction rhythnm of plasmodial strand IV. Site of active oscillation in an advancing Plasmodium. Protoplasma 95:123–133

    Article  Google Scholar 

  • Yoshimoto Y, Kamiya N (1984) ATP- and calcium-controlled contraction in a saponin model of Physarum polycophalum. Cell Struct Funct 9:135–141

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto Y, Matsumura F, Kamiya N (1981a) Simultaneous oscillations of Ca2+ efflux and tension generation in the permeabilized plasmodial strand of Physarum. Cell Motil 1: 433–443

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto Y, Sakai T, Kamiya N (1981b) ATP oscillation in Physarum Plasmodium. Protoplasma 109:159–168

    Article  CAS  Google Scholar 

  • Yumura S, Fukui Y (1985) Reversible cyclic AMP-dependent change in distribution of myosin thick filaments in Dictyostelium. Nature 314:194–196

    Article  PubMed  CAS  Google Scholar 

  • Yumura S, Mori H, Fukui Y (1984) Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J Cell Biol 99:894–899

    Article  PubMed  CAS  Google Scholar 

  • Zubrzycka-Gaarn E, Korczak B, Osinska HE (1979) Identification of sarcoplasmic reticulum- like system in Physarum polycephalum. FEBS Lett 107:335–339

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shimmen, T. (1992). Mechanisms of Cytoplasmic Streaming and Amoeboid Movement. In: Sugi, H. (eds) Muscle Contraction and Cell Motility. Advances in Comparative and Environmental Physiology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76927-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76927-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76929-0

  • Online ISBN: 978-3-642-76927-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics