Skip to main content

Molecular Mechanism of Actin-Myosin Interaction in Muscle Contraction

  • Chapter
Muscle Contraction and Cell Motility

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 12))

Abstract

Muscle contraction results from the relative sliding between the thick and thin myofilaments in all kinds of muscle. Since myofilament sliding is coupled with ATP hydrolysis, the physiological function of muscle is to convert energy derived from chemical reactions into mechanical work and heat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott BC, Aubert XM (1951) Changes of energy in muscle during very slow stretches. Proc R Soc Lond Ser B 139:104–117

    Article  CAS  Google Scholar 

  • Abbott BC, Aubert XM (1952) The force exerted by active striated muscle during and after change of length. J Physiol 117:77–86

    PubMed  CAS  Google Scholar 

  • Amemiya Y, Tameyasu T, Tanaka H, Hashizume H, Sugi H (1980) Time-resolved X-ray diffraction from frog skeletal muscle during shortening against an inertial load and a quick release. Proc Jpn Acad 56(B):235–240

    Article  Google Scholar 

  • Amemiya Y, Iwamoto H, Kobayashi T, Sugi H, Tanaka H, Wakabayashi K (1988) Time- resolved X-ray diffraction studies on the effect of slow length changes on tetanized frog skeletal muscle. J Physiol 407:231–241

    PubMed  CAS  Google Scholar 

  • Armstrong CM, Huxley AF, Julian FJ (1966) Oscillatory responses in frog skeletal muscle fibres. J Physiol 186:26–27P

    Google Scholar 

  • Aronson JF, Morales MF (1969) Polarization of tryptophane fluorescence from glycerol-extracted muscle fibers. Biochemistry 8:4517–4522

    Article  PubMed  CAS  Google Scholar 

  • Bagni MA, Cecchi G, Colomo F, Tesi C (1988) Plateau and descending limb of the sarcomere length-tension relation in short length-clamped segments of frog muscle fibres. J Physiol 401:581–595

    PubMed  CAS  Google Scholar 

  • Bagni MA, Cecchi G, Colomo F, Poggesi C (1990) Tension and stiffness of frog muscle fibres at full filament overlap. J Muscle Res Cell Motil 11:371–377

    Article  PubMed  CAS  Google Scholar 

  • Bagshaw CR, Trentham DR (1973) The reversibility of adenosin triphosphate cleavage by myosin. Biochem J 133:323–328

    PubMed  CAS  Google Scholar 

  • Bagshaw CR, Eccleston JF, Eckstein F, Goody RS, Gutfreund H, Trenthan DR (1974) The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine dephosphate dissociation. Biochem J 141:351–364

    PubMed  CAS  Google Scholar 

  • Borejdo J, Oplatka A (1976) Tension development in skinned glycerinated rabbit psoas fiber segments irrigated with soluble myosin fragments. Biochim Biophys Acta 440:241–258

    Article  PubMed  CAS  Google Scholar 

  • Borejdo J, Putnam S, Morales MF (1979) Fluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction. Proc Natl Acad Sci USA 76:6346–6450

    Article  PubMed  CAS  Google Scholar 

  • Botts J, Thomason JF, Morales MF (1989) On the origin and transmission of force in actomyosin subfragment-1. Proc Natl Acad Sci USA 86:2204–2208

    Article  PubMed  CAS  Google Scholar 

  • Brenner B (1980) Effect of free sarcoplasmic Ca2+ concentration on maximum unloaded shortening velocity: measurements on single glycerinated rabbit psoas muscle fibres. J Muscle Res Cell Motil 1:409–428

    Article  Google Scholar 

  • Brenner B, Schoenberg M, Chalovich JM, Greene LE, Eisenberg M (1982) Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc Natl Acad Sci USA 79:7288–7291

    Article  PubMed  CAS  Google Scholar 

  • Burke M, Reisler E, Harrington WF (1976) Effect of bridging the two essential thiols of myosin on its spatial and actin-binding properties. Biochemistry 15:1923–1927

    Article  PubMed  CAS  Google Scholar 

  • Cavagna GA, Citterio G (1974) Effect of stretching on the elastic characteristics and the contractile component of frog striated muscle. J Physiol 239:1–14

    PubMed  CAS  Google Scholar 

  • Cecchi G, Griffiths PJ, Taylor SR (1984) The kinetics of cross-bridge attachment and detachment studied by high frequency stiffness measuurements. In: Pollack GH, Sugi H (eds) Contractile mechanisms in muscle. Plenum, New York, pp 641–655

    Google Scholar 

  • Chaen S, Oiwa K, Shimmen T, Iwamoto H, Sugi H (1989) Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro. Proc Natl Acad Sci USA 86:1510–1514

    Article  PubMed  CAS  Google Scholar 

  • Chaen S, Shimada M, Sugi H (1986) Evidence for cooperative interactions of myosin heads with thin filament in the force generation of vertebrate skeletal muscle fibers. J Biol Chem 261:13632–13636

    PubMed  CAS  Google Scholar 

  • Chaen S, Oiwa K, Shimmen T, Iwamoto H, Sugi H (1989) Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro. Proc Natl Acad Sci USA 86:1510–1514

    Article  PubMed  CAS  Google Scholar 

  • Civan MM, Podolsky RJ (1966) Contraction kinetics of striated muscle fibres following quick changes in load. J Physiol 184:511–534

    PubMed  CAS  Google Scholar 

  • Cooke R (1981) Stress does not alter the conformation of a domain of the myosin cross-bridge in rigor muscle fibres. Nature 294:570–571

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, Crowder MS, Thomas DD (1982) Orientation of spin labels attached to cross-bridges in contracting muscle fibres. Nature 300:776–778

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, Crowder MS, Wendt CH, Barnett VA, Thomas D (1984) Muscle cross-bridges: do they rotate? In: Pollack GH, Sugi H (eds) Contractile mechanisms in muscle. Plenum, New York, pp 413–427

    Google Scholar 

  • Curtin NA, Davies RE (1975) Very high tension with very little ATP breakdown by active skeletal muscle. J Mechanochem Cell Moti 13:147–154

    Google Scholar 

  • Danzig JA, Lacktis JW, Homsher E, Goldman YE (1987) Mechanical transients initiated by photolysis of caged Pi uring active skeletal muscle contractions. Biophys J 51:3a

    Google Scholar 

  • Dewey MM, Levine RJC, Colfresh DE, Walcott B, Bann L, Baldwin A, Brink P (1979) Stractural changes in thick filament during sarcomere shortening in Limulus striated muscle. In: Sugi H, Pollack GH (eds) Cross-bridge mechanism in muscle contraction. University of Tokyo Press, Tokyo, pp 3–22

    Google Scholar 

  • dos Remedios CG, Millikan RGC, Morales MF (1972) Polarization of tryptophan fluorescence from single striated muscle fibers. J Gen Physiol 59:103–120

    Article  PubMed  Google Scholar 

  • Edman KAP (1975) Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J Physiol 246:255–275

    PubMed  CAS  Google Scholar 

  • Edman KAP (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol 291:143–159

    PubMed  CAS  Google Scholar 

  • Edman KAP (1980) Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres. Acta Physiol Scand 109:143–159

    Article  Google Scholar 

  • Edman kAP (1988) Double-hyperbolic force-velocity relation in frog muscle fibres. J Physiol 494:301–321

    Google Scholar 

  • Edman KAP, Reggiani C (1987) The sarcomere length-tension relation determined in short segments of intact muscle fibres of the frog. J Physiol 385:709–732

    PubMed  CAS  Google Scholar 

  • Edman KAP, Mulieri LA, Scubon-Mulieri B (1976) Non-hyperbolic force-velocity relationship in single muscle fibres. Acta Physiol Scand 98:143–156

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP, Elzinga G, Noble MIM (1978) Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal fibres. J Physiol 281:139–155

    PubMed  CAS  Google Scholar 

  • Eisenberg E, Kielly WW (1973) Evidence for a refractory state of heavy meromyosin and subfragment-1 unable to bind to actin in the presence of ATP. Cold Spring Harbor Symp Quant Biol 37:145–152

    CAS  Google Scholar 

  • Eisenberg E, Moos C (1968) The adenosine triphosphatase activity of acto-heavy meromyosin. A kinetic analysis of actin activation. Biochemistry 7:1486–1489

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg E, Moos C (1970) Actin activation of heavy meromyosin adenosine triphosphatase. Dependence on adenosine triphosphatate and actin concentrations. J Biol Chem 245:2451–2456

    PubMed  CAS  Google Scholar 

  • Eisenberg E, Dobkin L, Kielley WW (1972) Heavy meromyosin: evidence for a refractory state unable to bind to actin in the presence of ATP. Proc Natl Acad Sci USA 69:667–671

    Article  PubMed  CAS  Google Scholar 

  • Ekelund MC, Edman KAP (1982) Shortening induced deactivation of skinned fibres of frog and mouse striated muscle. Acta Physiol Scand 116:189–199

    Article  PubMed  CAS  Google Scholar 

  • Elliott GF, Lowy J, Millman BM (1963) An X-ray and light diffraction study of the filament lattice of striated muscle in the living state and in rigor. J Mol Biol 6:295–305

    Article  Google Scholar 

  • Fenn WO (1923) A quantitative comparison between the energy liberated and the work erformed by the isolated sartorius muscle of the frog. J Physiol 58:175–203

    PubMed  CAS  Google Scholar 

  • Fenn WO (1924) The relation between the work performed and the energy liberated in muscular contraction. J Physiol 58:373–395

    PubMed  CAS  Google Scholar 

  • Ford LE, Huxley AF, Simmons RM (1977) Tension responses to sudden length change in simulated frog muscle fibres near slack length. J Physiol 269:441–515

    PubMed  CAS  Google Scholar 

  • Ford LE, Huxley AF, Simmons RM (1981) The relation between stiffness and filament overlap in stimulated frog muscle fibres. J Physiol 311:219–249

    PubMed  CAS  Google Scholar 

  • Gasser HS, Hill AV (1924) The dynamics of muscular contraction. Proc R Soc Lond Ser B 96:398–437

    Article  Google Scholar 

  • Goldman YE, Hibberd MG, McCray JA, Trentham DR (1982) Relaxation of muscle fibres by photolysis of caged ATP. Nature 300:701–705

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966a) Tension development in highly stretched vertebrate muscle fibres. J Physiol 184:143–169

    PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966b) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  • Granzier HLM, Pollack GH (1990) The descending limb of the force-sarcomere length relation revisited. J Physiol 421:595–615

    PubMed  CAS  Google Scholar 

  • Gulati J, Podolsky RJ (1978) Contraction transients of skinned muscle fibers: effects of calcium and ionic strength. J Gen Physiol 72:701–716

    Article  PubMed  CAS  Google Scholar 

  • Harada Y, Yanagida T (1988) Direct observation of molecular motility by light microscopy. Cell Motil Cytoskel 10:71

    Article  CAS  Google Scholar 

  • Harada Y, Noguchi A, Kishino A, Yanagida T (1987) Sliding movement of single actin filaments on one-headed myosin filaments. Nature 326:605–608

    Article  Google Scholar 

  • Harrington WF, Ueno H, Davis JS (1988) Helix-coil melting in rigor and activated cross- bridges of skeletal muscle. In: Sugi H, Pollack GH (eds) Molecular mechanism of muscle contraction. Plenum, New York, pp 307–318

    Google Scholar 

  • Hatta I, Sugi H, Tamura Y (1988) Stiffness changes in frog skeletal muscle during contraction ecorded using ultrasonic waves. J Physiol 403:193–209

    PubMed  CAS  Google Scholar 

  • Heuser JE, Cooke R (1983) Actin-myosin interction visualized in freeze-etch, deep-etch replica technique. J Mol Biol 169:97–122

    Article  PubMed  CAS  Google Scholar 

  • Hibbard MG, Trentham DR (1986) Relationships between chemical and mechanical events during musclular contraction. Annu Rev Biophys Chem 15:119–161

    Article  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B 126:136–195

    Article  Google Scholar 

  • Hill AV (1949) The heat of activation and the heat of shortening in a muscle twitch. Proc R Soc B 136:195–211

    Article  CAS  Google Scholar 

  • Hill AV (1964) The effect of load on the heat of shortening of muscle. Proc R Soc B 159:297–318

    Article  CAS  Google Scholar 

  • Hill AV, Howarth JV (1959) The reversal of chemical reactions in contracting muscle during an applied stretch. Proc R Soc B 151:169–193

    Article  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    PubMed  CAS  Google Scholar 

  • Huxley AF (1974) Review lecture, muscular contraction. J Physiol 243:1–43

    PubMed  CAS  Google Scholar 

  • Huxley AF, Niedergerke R (1954) Interference microscopy of living muscle fibres. Nature 173:971–973

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE (1960) Muscle cells. In: Brächet J, Mirsky JE (eds) The cell. Academic Press, New York, pp 365–481

    Google Scholar 

  • Huxley HE (1990) Sliding filaments and molecular motile systems. J Biol Chem 265:833347–8350

    Google Scholar 

  • Huxley HE, Faruqi AR (1983) Time-resolved X-ray diffraction studies on vertebrate striated muscle. Annu Rev Biophys Bioeng 12:381–417

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE, Simmons RM, Faruqi AR, Kress M, Bordas J, Koch MHJ (1981) Millisecond time-resolved changes in X-ray reflections from contracting muscle during rapid mechanical transients, recorded using synchrotron radiation. Proc Natl Acad Sci USA 78:2297–2301

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE, Farugi AR, Kress K, Bordas J, Koch MHJ (1982) Time-resolved X-ray diffraction studies of the myosin layer-line reflections during muscle contraction. J Mol Biol 158:637–684

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE, Simmons RM, Faruqi AR, Kress M, Bordas J, Koch MHJ (1983) Changes in the X-ray diffractions from contracting muscle during rapid mechanical transients and their structural implications. J Mol Biol 169:469–506

    Article  PubMed  CAS  Google Scholar 

  • Inoue A, Takenaka H, Arata T, Tonomura Y (1979) Functional implications of the two-headed structure of myosin. Adv Biophys 13:1–194

    PubMed  CAS  Google Scholar 

  • Iwamoto H, Sugaya R, Sugi H (1990) Force-velocity relation of frog skeletal muscle fibres shortening under continuously changing load. J Physiol 422:185–502

    PubMed  CAS  Google Scholar 

  • Jewell BR, Wilkie DR (1958) An analysis of the mechanical components in frog’s striated muscle. J Physiol 143:515–540

    PubMed  CAS  Google Scholar 

  • Julian FJ (1971) The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J Physiol 218:117–145

    PubMed  CAS  Google Scholar 

  • Julian FJ, Morgan DL (1979a) Intersarcomere dynamics during fixed-end tetanic contractions of frog muscle fibres. J Physiol 293:365–378

    PubMed  CAS  Google Scholar 

  • Julian FJ, Morgan DL (1979b) The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres. J Physiol 293:379–392

    PubMed  CAS  Google Scholar 

  • Julian FJ, Moss RL (1981) Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned muscle fibres. J Physiol 311:179–199

    PubMed  CAS  Google Scholar 

  • Julian FJ, Sollins MR (1975) Variation of muscle stiffness with force at increasing speeds of shortening. J Gen Physiol 66:287–302

    Article  PubMed  CAS  Google Scholar 

  • Julian FJ, Rome LC, Stephenson DG, Striz S (1986a) The maximum speed of shortening in living and skinned frog muscle fibres. J Physiol 370:181–199

    PubMed  CAS  Google Scholar 

  • Julian FJ, Rome JC, Stephenson DG, Striz S (1986b) The influence of free calcium on the maximum speed of shortening in skinned frog muscle fibres. J Physiol 380:257–273

    PubMed  CAS  Google Scholar 

  • Krön SJ, Spudich JA (1986) Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA 83:6272–6276

    Article  PubMed  Google Scholar 

  • Kuhn HJ (1973) Transformation of chemical energy into mechanical energy by glycerol- extracted fibres of insect flight muscle in the absence of nucleoside triphosphate hydrolysis. Experientia 29:1086–1088

    Article  PubMed  CAS  Google Scholar 

  • Lamed R, Oplatka A, Reisler E (1976) Affinity chromatography of heavy meromyosin subfragment-1 reacted with thiol reagents. Biochim Biophys Acta 427:688–695

    PubMed  CAS  Google Scholar 

  • Lopez JR, Wank LA, Taylor SR (1981) Skeletal muscle: length-dependent effects of potentiating agents. Science 214:79–82

    Article  PubMed  CAS  Google Scholar 

  • Lymn RW, Taylor EW (1970) Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin. Biochemistry 9:2975–2983

    Article  PubMed  CAS  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    Article  PubMed  CAS  Google Scholar 

  • Maréchal G, Plaghki L (1979) The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at constant velocity. J Gen Physiol 73:453–467

    Article  PubMed  Google Scholar 

  • Matsuda T, Podolsky RJ (1984) X-ray evidence for two structural states of the actomyosin cross-bridge in muscle fibers. Proc Natl Acad Sci USA 81:2364–2368

    Article  PubMed  CAS  Google Scholar 

  • Morales MF, Botts J (1979) On the molecular basis for chemomechanical energy transduction in muscle. Proc Natl Acad Sci USA 76:3857–3859

    Article  PubMed  CAS  Google Scholar 

  • Naylor GRS, Podolsky RJ (1981) X-ray diffraction of striated muscle fibers in rigor. Proc Natl Acad Sci USA 78:5559–5563

    Article  PubMed  CAS  Google Scholar 

  • Oiwa K, Chaen S, Kamitsubo E, Shimmen T, Sugi H (1990) Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope. Proc Natl Acad Sci USA 87:7893–7897

    Article  PubMed  CAS  Google Scholar 

  • Oiwa K, Chaen S, Sugi H (1991) Measurement of work done by ATP-induced sliding between rabbit muscle myosin and algal cell actin cables in vitro. J Physiol 437:751–763

    PubMed  CAS  Google Scholar 

  • Oplatka A, Gadasi H, Borejdo J (1974) The contraction of “ghost” myofibrils and glycerinated muscle fibers irrigated with heavy meromyosin subfragment-1. Biochem Biophys Res Commun 58:905–912

    Article  PubMed  CAS  Google Scholar 

  • Page SG, Huxley HE (1963) Filament lengths in striated muscle. J Cell Biol 19:369–390

    Article  PubMed  CAS  Google Scholar 

  • Podolsky RJ, Nolan AC (1973) Muscle contraction transients, cross-bridge kinetics, and the Fenn effect. Cold Spring Harbor Symp Quant Biol 37:661–668

    CAS  Google Scholar 

  • Podolsky RJ, Teichholz LE (1970) The relation between calcium and contraction kinetics in skinned muscle fibres. J Physiol 211:19–35

    PubMed  CAS  Google Scholar 

  • Podolsky RJ, Nolan AC, Zavaler SA (1969) Cross-bridge properties derived from muscle isotonic velocity transients. Proc Natl Acad Sci USA 64:504–511

    Article  PubMed  CAS  Google Scholar 

  • Pollack GH (1990) Muscle and molecules: uncovering the principles of biological motion. Ebner & Sons, Seattle.

    Google Scholar 

  • Ramsey RW, Street SF (1940) The isometric length-tension diagram of isolated skeletal muscle fibers of the frog. J Cell Comp Physiol 15:11–34

    Article  CAS  Google Scholar 

  • Reedy MK, Goody RS, Hofmann W, Rosenbaum G (1983) Co-ordinated electron microscopy and X-ray studies of glycerinated insect flight muscle. I. X-ray diffraction monitoring during preparation for electron microscopy of muscle fibres fixed in rigor, in ATP and in AMPPNP. J Muscle Res Cell Motil 4:25–53

    Article  PubMed  CAS  Google Scholar 

  • Reedy MK, Holmes KC, Tregear RT (1965) Induced changes in orientation of the cross bridges of glycerinated insect flight muscle. Nature 207:1276–1280

    Article  PubMed  CAS  Google Scholar 

  • Reisler E, Burk M, Himmelfarb S, Harrington WF (1974) Spatial proximity of the two essential sulfhydryl groups of myosin. Biochemistry 13:3837–3840

    Article  PubMed  CAS  Google Scholar 

  • Schoenberg M, Wells JB, Podolsky RJ (1974) Muscle compliance and the longitudinal transmission of mechanical impulse. J Gen Physiol 64:623–642

    Article  PubMed  CAS  Google Scholar 

  • Sellers JR, Kachar B (1990) Polarity and velocity of sliding filaments: control of direction by actin and of spead of myosin. Sience 249:406–408

    Article  CAS  Google Scholar 

  • Sheetz MP, Spudich JA (1983) Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303:31–35

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T, Yano M (1984) Active sliding movement of latex beads coated with skeletal muscle myosin on Chara actin bundles. Protoplasma 121:132–137

    Article  CAS  Google Scholar 

  • Stein LA, Chock PB, Eisenberg E (1981) Mechanism of actomyosin ATPase: effect of actin on the ATP hydrolysis step. Proc Natl Acad Sci USA 78:1346–1350

    Article  PubMed  CAS  Google Scholar 

  • Sugi H (1972) Tension changes during and after stretch in frog muscle fibres. J Physiol 225:237–253

    PubMed  CAS  Google Scholar 

  • Sugi H, Gomi S (1981) Changes in the A-band width during contraction in horseshoe crab striated muscle. Experientia 37:65–67

    Article  Google Scholar 

  • Sugi H, Gomi S (1984) Cinematographic studies on the A-band length changes during Ca- activated contraction in horseshoe crab muscle myofibrils. In: Pollack GH, Sugi H (eds) Contractile mechanisms in muscle. Plenum, New York, pp 107–118

    Google Scholar 

  • Sugi H, Kobayashi T (1983) Sarcomere length and tension changes in tetanized frog muscle fibers after quick stretches and release. Proc Natl Acad Sci USA 80:6422–6425

    Article  PubMed  CAS  Google Scholar 

  • Sugi H, Tsuchiya T (1981a) Isotonic velocity transients in frog muscle fibres following quick changes in load. J Physiol 319:239–252

    PubMed  CAS  Google Scholar 

  • Sugi H, Tsuchiya T (1981b) Enhancement of mechanical performance in frog muscle fibres after quick increases in load. J Physiol 319:239–252

    PubMed  CAS  Google Scholar 

  • Sugi H, Tsuchiya T (1988) Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres. J Physiol 407:215–229

    PubMed  CAS  Google Scholar 

  • Sugi H, Amemiya Y, Hashizume H, Tameyasu T, Tanaka H (1980) Kinetic properties of the cross-bridges in frog skeletal muscle as studied by time-resolved X-ray diffraction. In: Ebashi S, Maruyama K, Endo M (eds) Muscle contraction. Its regulatory mechanisms. Jpn Sci Soc Press, Tokyo, Springer Berlin Heidelberg New York, pp 53–63

    Google Scholar 

  • Sugi H, Ohta T, Tameyasu T (1983) Development of the maximum isometric force at short sarcomere lengths in calcium-activated muscle myofibrils. Experientia 39:147–148

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Sugi H (1983) Extensibility of the myofilaments in vertebrate skeletal muscle as revealed by stretching rigor muscle fibers. J Gen Physiol 81:531–546

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Oshimi Y, Sugi H (1986) Ultrastructural observation of the cross-bridge movement during muscle contraction. Proc Xlth Int Congr Electron microsc, Kyoto pp 3111–3112

    Google Scholar 

  • Suzuki S, Tsuchiya T, Oshimi Y, Takei T, Sugi H (1989) Electron microscopic studies on the stretch-induced disordering of the myofilament lattice in tetanized frog skeletal muscle fibers. J Electron Microsc 38:60–63

    CAS  Google Scholar 

  • Tamura Y, Hatta I, Matsuda T, Sugi H, Tsuchiya T (1982) Changes in muscle stiffness during contraction recorded using ultrasonic waves. Nature 299:631–633

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Sugi H, Hashizume H (1984) Effect of stretch on the equatorial X-ray diffraction pattern from frog skeletal muscle in rigor. In: Pollack GH, Sugi H (eds) Contractile mechanisms in muscle. Plenum, New York, pp 203–205

    Google Scholar 

  • Thames MD, Teichholz LE, Podolsky RJ (1974) Ionic strength and the contraction kinetics of skinned muscle fibres. J Gen Physiol 63:509–530

    Article  PubMed  CAS  Google Scholar 

  • Tokiwa T, Morales MF (1971) Independent and comparative reactions of myosin heads with F-actin in the presence of adenosine triphosphate. Biochemistry 10:1722–1727

    Article  PubMed  CAS  Google Scholar 

  • Tonomura Y (1972) Muscle protein, muscle contraction and cation transport. University of Tokyo Press, Tokyo

    Google Scholar 

  • Tonomura Y, Kitagawa S, Yoshimura J (1962) The initial phase of myosin a adenosine triphosphatase and the possible phosphorylation of myosin A. J Biol Chem 237:3660–3660

    PubMed  CAS  Google Scholar 

  • Toyoshima YY, Krön SJ, McNally EM, Niebling KR, Toyoshima C, Spudich JA (1987) Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328:536–539

    Article  PubMed  CAS  Google Scholar 

  • Tregear RT, Wakabayashi K, Tanaka H, Iwamoto H, Reedy MC, Reedy MK, Sugi H, Amemiya Y (1990) X-ray diffraction and electron microscopy from Lethocerus flight muscle partially relaxed by adenylylimidodiphosphate and ethylene glycol. J Mol Biol 214:129–141

    Article  PubMed  CAS  Google Scholar 

  • Trentham DR, Bardsley RG, Eccleston JF, Weeds AG (1972) Elementary processes of the magnesium ion-dependent adenosine triphosphatase activity of heavy meromyosin. Biochem J 126:635–644

    PubMed  CAS  Google Scholar 

  • Trentham DR, Eccleston JF, Bagshaw CR (1976) Kinetic analysis of ATPase mechanisms. Q Rev Biophys 9:217–281

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Baasteu PHWW, Pollack GH (1988) Effect of tension on the rigor cross-bridge angle. In: Sugi H, Pollack GH (eds) Molecular mechanism of muscle contraction. Plenum, New York, pp 17–30

    Google Scholar 

  • Tsukita S, Yano M (1985) Actomyosin structure in contracting muscle detected by rapid freezing. Nature 317:182–184

    Article  PubMed  CAS  Google Scholar 

  • Ueno H, Harrington WF (1981) Cross-bridge movement and the conformational state of the myosin hinge in skeletal muscle. J Mol Biol 149:619–640

    Article  PubMed  CAS  Google Scholar 

  • Wray JS, Holmes KC (1981) X-ray diffraction studies of muscle. Annu Rev Physiol 43:553–565

    Article  PubMed  CAS  Google Scholar 

  • Yagi N, O’Brien J, Matsubara I (1981) Changes of thick filament structure during contraction of frog striated muscle. Biophys J 33:121–138

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Ishii N, Takahashi K (1990) Direction and speed of actin filaments moving along thick filaments isolated from molluscan smooth muscle. J Biochem 108:341–343

    PubMed  CAS  Google Scholar 

  • Yanagida T (1984) Angles of fluorescently labelled myosin heads and actin monomers in contracting and rigor stained muscle fiber. In: Pollack GH, Sugi H (eds) Contractile mechanisms in muscle. Plenum, New York, pp 397–411

    Google Scholar 

  • Yanagida T (1985) Angle of active site of myosin heads in contracting muscle during sudden length changes. J Muscle Res Cell Motil 6:43–52

    Article  PubMed  CAS  Google Scholar 

  • Yanagida T, Harada Y (1988) Minimum structural unit required for energy transduction in muscle. In: Sugi H, Pollack GH (eds) Molecular mechanism of muscle contraction. Plenum, New York, pp 277–287

    Google Scholar 

  • Young DM (1967) Studies on the structural basis of the interaction between myosin and actin. Proc Natl Acad Sci USA 58:2393–2400

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sugi, H. (1992). Molecular Mechanism of Actin-Myosin Interaction in Muscle Contraction. In: Sugi, H. (eds) Muscle Contraction and Cell Motility. Advances in Comparative and Environmental Physiology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76927-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76927-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76929-0

  • Online ISBN: 978-3-642-76927-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics