Skip to main content

GABA and Endocrine Cells of the Gastro-entero-pancreatic System: A Review

  • Conference paper
Book cover GABA Outside the CNS

Abstract

γ-Aminobutyric acid (GABA) is not only a major inhibitory neurotransmitter in the central nervous system of vertebrates, but it is also a peripheral neuromodulator, as in the enteric nervous system [49]. A few years ago, the presence of GABA was thought to be restricted to nerve cells only. However, recent studies have revealed its presence in various non-neural organs such as the ovary, adenohypophysis, adrenal medulla, liver, digestive tract, and pancreas. In these organs, several categories of (neuro)endocrine cells display both morphological and physiological indications of direct interaction with GABA, i.e., prolactin-secreting cells [4, 5, 60, 69] and adrenal chromaffin cells [11, 16, 51, 52]. GABA has also been involved in the regulation of hormonal secretion in the gastro-entero-pancreatic (GEP) system, but its precise localization and mechanisms of action remain unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrén B, Taborsky GJ, Porte D (1986) Neuropeptidergic versus cholinergic and adrenergic regulation of islet hormone secretion. Diabetologia 29: 827–836

    Article  PubMed  Google Scholar 

  2. Althaus JS, Martin DL (1989) Entropy as a factor in the binding of γ-aminobutyric acid and nipecotic acid to the γ-aminobutyric acid transport system. Neurochem Res 14: 311–316

    Article  PubMed  CAS  Google Scholar 

  3. Amenta F, Collier WL, Erdö SL, Giuliani S, Maggi CA, Meli A (1988) GABAA receptor sites modulating catecholamine secretion in the rat adrenal gland: evidence from 3H-muscimol autoradiography and in vivo functional studies. Pharmacology 37: 394–402

    Article  PubMed  CAS  Google Scholar 

  4. Anderson R, Mitchell R (1986) Biphasic effect of GABAÄ receptor antagonists on prolactin secretion: evidence for two types of GABAA receptor complex on lactotrophes. Eur J Pharmacol 124: 1–9

    Article  PubMed  CAS  Google Scholar 

  5. Apud JA, Cocchi D, Locatelli V, Masotto C, Müller EE, Racagni G (1989) Biochemical and functional aspects on the control of prolactin release by the hypothalamopituitary GABAergic system. Psychoneuroendocrinology 14: 3–17

    Article  PubMed  CAS  Google Scholar 

  6. Baxter CF, Tewari S, Raeburn S (1972) The possible role of gamma-aminobutyric acid in the synthesis of protein. Adv Biochem Psychopharmacol 4: 195–216

    PubMed  CAS  Google Scholar 

  7. Bereiter DA, Berthoud HR, Becker MJA, Jeanrenaud B (1982) Brain stem infusion of the γ-aminobutyric acid antagonist bicuculline increases plasma insulin levels in the rat. Endocrinology 111: 324–328

    Article  PubMed  CAS  Google Scholar 

  8. Bouhaddi K, Thomopoulos P, Fages C, Khelil M, Tardy M (1988) Insulin effect on GABA uptake in astroglial primary cultures. Neurochem Res 13: 1119–1124

    Article  PubMed  CAS  Google Scholar 

  9. Breuker E, Johnston GAR (1975) Inhibition of acetylcholinesterase by bicuculline and related alkaloids. J Neurochem 25: 903–904

    Article  PubMed  CAS  Google Scholar 

  10. Briel G, Gylfe E, Hellman B, Neuhoff V (1972) Microdetermination of free amino acids in pancreatic islets isolated from obese-hyperglycemic mice. Acta Physiol Scand 84: 247–253

    Article  PubMed  CAS  Google Scholar 

  11. Castro E, Oset-Gasque MJ, Canadas S, Gimenez G, Gonzalez MP(1988) GABA A and GABA B sites in bovine adrenal medulla membranes. J Neurosci Res 20: 241–245

    Article  PubMed  CAS  Google Scholar 

  12. Cavagnini F, Pinto M, Dubini A, Invitti C, Cappelletti G, Polli EE (1982) Effects of gamma-aminobutyric acid (GABA) and muscimol on endocrine pancreatic function in man. Metabolism 31: 73–77

    Article  PubMed  CAS  Google Scholar 

  13. Davanger S, Ottersen OP, Storm-Mathisen J (1987) Immunocytochemical localization of GABA in cat myenteric plexus. Neurosci Lett 73: 27–32

    Article  PubMed  CAS  Google Scholar 

  14. Davanger S, Ottersen OP, Storm-Mathisen J (1989) GABA-immunoreactive cells in the rat gastrointestinal epithelium. Anat Embryol 179: 221–226

    Article  PubMed  CAS  Google Scholar 

  15. Del Tacca M, Blandizzi C, Bernardini MC, Martelli F, Deila Longa A (1989) GABAA-mediated gastrin release induced by baclofen in the isolated vasculary perfused rat stomach. Experientia 45: 734–736

    Article  PubMed  Google Scholar 

  16. Doroshenko PA (1989) γ-Aminobutyric acid elevates cytosoiic Ca in bovine chromaffin cells. Neurosci Lett 104: 83–87

    Article  PubMed  CAS  Google Scholar 

  17. Drummond RJ, Phillips AT (1974) L-Glutamic acid decarboxylase in non-neural tissues of the mouse. J Neurochem 23: 1207–1213

    Article  PubMed  CAS  Google Scholar 

  18. Erdö SL, Kiss B (1986) Presence of GABA, glutamate decarboxylase, and GABA transaminase in peripheral tissues: a collection of quantitative data. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 5–17

    Google Scholar 

  19. Erdö SL, Wolff JR (1988) Reieasable, non-neural GABA pool in rat stomach. Eur J Pharmacol 156: 165–168

    Article  PubMed  Google Scholar 

  20. Erdö SL, Wolff JR (1990) y-Aminobutyric acid outside the mammalian brain. J Neurochem 54: 363–372

    Article  PubMed  Google Scholar 

  21. Erdö SL, Ezer E, Matuz J, Wolff JR, Amenta F (1989) GABAA receptors in the rat stomach may mediate mucoprotective effects. Eur J Pharmacol 165: 79–86

    Article  PubMed  Google Scholar 

  22. Erdö SL, De Vincentis G, Amenta F (1990) Autoradiographic localization of [3H]muscimol binding sites in the rat stomach: evidence for mucosal GABAA receptors. Eur J Pharmacol 175: 351–354

    Article  PubMed  Google Scholar 

  23. Fogel WA (1986) GABA and polyamine metabolism in peripheral tissues. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 35–56

    Google Scholar 

  24. Fujimoto M, Kataoka Y, Guidotti A, Hanbauer I (1987) Effect of γ-aminobutyric acidA receptor agonists and antagonists on the release of enkephalin-containing peptides from dog adrenal gland. J Pharmacol Exp Ther 243: 195–199

    PubMed  CAS  Google Scholar 

  25. Fung KP, Lee KW, Choy YM (1985) Pancreatic and brain gamma-amino-butyric acid in alloxan-induced diabetic rats. Nutr Reports Int 32: 1267–1271

    CAS  Google Scholar 

  26. Garry DJ, Sorenson RL, Eide RP, Maley BE, Madsen A (1986) Immunohistochemical colocalization of GABA and insulin in ß-cells of rat islet. Diabetes 35: 1090–1095

    Article  PubMed  CAS  Google Scholar 

  27. Garry DJ, Sorenson RL, Coulter HD (1987) Ultrastructural localization of gamma amino butyric acid immunoreactivity in B cells of the rat pancreas. Diabetologia 30: 115–119

    PubMed  CAS  Google Scholar 

  28. Garry DJ, Coulter HD, Maclntee TJ, Wu JY, Sorenson RL (1987) Immunoreactive GABA transaminase within the pancreatic islet is localized in mitochondria of the Bceil. J Histochem Cytochem 35: 831–836

    Article  PubMed  CAS  Google Scholar 

  29. Garry DJ, Garry MG, Sorenson RL (1988) Ultrastructural immunocytochemical localization of L-glutamate decarboxylase and GABA in rat pancreatic zymogen granules. Cell Tissue Res 252: 191–197

    Article  PubMed  CAS  Google Scholar 

  30. Gebauer H (1981) GABA transport in the rat thyroid. Naunyn Schmiedebergs Arch Pharmacol 317: 61–66

    Article  CAS  Google Scholar 

  31. Gerber JC, Hare TA (1979) Gamma-aminobutyric acid in peripheral tissue, with emphasis on the endocrine pancreas. Presence in two species and reduction by streptozotocin. Diabetes 28: 1073–1076

    CAS  Google Scholar 

  32. Gerber JC, Hare TA (1980) GABA in peripheral tissues: presence and actions in endocrine pancreatic function. Brain Res Bull 5: 341–346

    Article  CAS  Google Scholar 

  33. Gilon P, Remacle C, Janssens de Varebeke P, Pauwels G, Hoet JJ (1987) GABA content and localization of high-affinity GABA uptake during the development of the rat pancreas Cell Mol Biol 33: 573–585

    PubMed  CAS  Google Scholar 

  34. Gilon P, Reusens-Billen B, Remacle C, Janssens de Varebeke P, Pauwels G, Hoet JJ (1987) Localization of high-affinity GABA uptake and GABA content in the rat duodenum during development. Cell Tissue Res 249: 593–600

    Article  PubMed  CAS  Google Scholar 

  35. Gilon P, Campistron G, Geffard M, Remacle C (1988) Immunocytochemical localization of GABA in endocrine cells of the rat entero-pancreatic system. Biol Cell 62: 265–273

    PubMed  CAS  Google Scholar 

  36. Gilon P, Remacle C (1989) High-affinity GABA uptake in a subpopulation of somatostatin cells in rat pancreas. J Histochem Cytochem 37: 1133–1139

    Article  PubMed  CAS  Google Scholar 

  37. Gilon P, Mallefet J, De Vriendt C, Pauwels S, Geffard M, Campistron G, Remacle C (1990) Immunocytochemical and autoradiographic studies of the endocrine cells interacting with GABA in the rat stomach. Histochemistry 93: 645–654

    Article  PubMed  CAS  Google Scholar 

  38. Goertz B (1979) Effect of γ-aminobutyric acid on cell-free protein synthesizing systems from mouse brain. Exp Brain Res 34: 365–372

    Article  PubMed  CAS  Google Scholar 

  39. Guo YS, Thompson JC, Singh P (1989) Effect of γ-aminobutyric acid on bombesinevoked release of somatostatin and gastrin from isolated rat stomach. Regul Pept 24: 179–186

    Article  PubMed  CAS  Google Scholar 

  40. Gylfe E (1974) Changes of free amino acids in pancreatic ß-cells after starvation and substrate deprivation. Acta Endocrinol 75: 105–118

    PubMed  CAS  Google Scholar 

  41. Gylfe E, Hellman B (1974) Role of glucose as a regulator and precursor of amino acids in the pancreatic ß-cells. Endocrinology 94: 1150–1156

    Article  PubMed  CAS  Google Scholar 

  42. Gylfe E, Sehlin J (1976) Interactions between the metabolism of L-leucine and Dglucose in the pancreatic ß-cells. Horm Metab Res 8: 7–11

    Article  PubMed  CAS  Google Scholar 

  43. Hakanson R, Alumets J, Stewart JA, Sundler F (1978) Does glutamate decarboxylase occur in endocrine cells of gut and pancreas? Scand J Gastroenterol 13: 74

    Google Scholar 

  44. Harty RF, Franklin PA (1983) GABA affects the release of gastrin and somatostatin from rat antral mucosa. Nature 303: 623–624

    Article  PubMed  CAS  Google Scholar 

  45. Harty RF, Franklin PA (1986) Cholinergic mediation of γ-aminobutyric acid-induced gastrin and somatostatin release from rat antrum. Gastroenterology 91: 1221–1226

    PubMed  CAS  Google Scholar 

  46. Harty RF, Murthy SNS (1986)GABAergic mechanisms in the endocrine stomach and duodenum: their possible functional significance. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 339–352

    Google Scholar 

  47. Hills JM, Jessen KR, Mirsky R (1987) An immunohistochemical study of the distribution of enteric GABA-containing neurons in the rat and guinea-pig intestine. Neuroscience 22: 301–312

    Article  PubMed  CAS  Google Scholar 

  48. Jessen KR, Mirsky R, Dennison ME, Burnstock G (1979) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature 281: 71–74

    Article  PubMed  CAS  Google Scholar 

  49. Jessen KR, Mirsky R, Hills JM (1987) GABA as an autonomic neurotransmitter: studies on intrinsic GABAergic neurons in the myenteric plexus of the gut. TINS 10: 255–262

    CAS  Google Scholar 

  50. Jessen KR, Hills JM, Limbrick AR (1988) GABA immunoreactivity and 3H-GABA uptake in mucosal epithelial cells of the rat stomach. Gut 29: 1549–1556

    Article  PubMed  CAS  Google Scholar 

  51. Kataoka Y, Fujimoto M, Alho H, Guidotti A, Geffard M, Kelly GD, Hanbauer I (1986) Intrinsic gamma aminobutyric acid receptors modulate the release of catecholamine from canine adrenal gland in situ. J Pharmacol Exp Ther 239: 584–590

    PubMed  CAS  Google Scholar 

  52. Kataoka Y, Ohara-Imaizumi M, Ueki S, Kumakura K (1988) Stimulatory action of yaminobutyric acid on catecholamine secretion from bovine adrenal chromaffin cells measured by a real-time monitoring system. J Neurochem 50: 1765–1768

    Article  PubMed  CAS  Google Scholar 

  53. Kawai K, Unger RH (1983) Effects of γ-aminobutyric acid on insulin, glucagon, and somatostatin release from isolated perfused dog pancreas. Endocrinology 113:111–113

    Article  PubMed  CAS  Google Scholar 

  54. Kerr DIB, Ong J (1986)GABAergic mechanisms in the gut: their role in the regulation of gut motility. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 153–174

    Google Scholar 

  55. Koop H, Arnold R (1986) Control of rat gastric somatostatin release by γ-aminobutyric acid (GABA). Horm Metab Res 18: 94–97

    Article  PubMed  CAS  Google Scholar 

  56. Krantis A, Webb T (1989) Autoradiographic localization of [3H]γ-aminobutyric acid in neuronal elements of the rat gastric antrum and intestine. J Auton Nerv Syst 29: 41–48

    Article  PubMed  CAS  Google Scholar 

  57. Krogsgaard-Larsen P, Falch E, Larsson OM, Schousboe A (1987) GABA uptake inhibitors: reievance to antiepileptic drug research. Epilepsy Res 1: 77–93

    Article  PubMed  CAS  Google Scholar 

  58. Kusunoki M, Yamamura T, Ichii S, Fujita S, Nakai T, Utsunomiya J (1988) The effects of sodium Valproate on plasma somatostatin and insulin in humans. J Clin Endocrinol Metab 67: 1060–1063

    Article  PubMed  CAS  Google Scholar 

  59. Lloyd KG, Prouteau M, Delahaye M, Magnier G, Voltz C (1986)GABA, gastric ulceration, and gastric acid secretion. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 353–364

    Google Scholar 

  60. MacCann SM, Rettori V (1986)Gamma aminobutyric acid (GABA) controls anterior pituitary hormone secretion. In: Racagni G, Donoso AO. (eds) GABA and endocrine function. Raven, New York, pp 173–189

    Google Scholar 

  61. MacEvoy RC, Madson KL (1980) Pancreatic insulin-, glucagon-, and somatostatinpositive islet cell populations during the perinatal development of the rat. Biol Neonate 38: 248–254

    Article  Google Scholar 

  62. MacEvoy-Bowe E, Hislop J, Wiggins D, Lund P (1987) Amino acid profiles during development of the fetal rat. Biol Neonate 52: 135–140

    Article  Google Scholar 

  63. Madtes P, Redburn DA (1983) GABA as a trophic factor during development. Life Sei 33: 979–984

    Article  CAS  Google Scholar 

  64. Malaisse WJ, Sener A, Carpinelli AR, Anjaneyulu K, Lebrun P, Herchuelz A, Christophe J (1980) The stimulus-secretion coupling of glucose-induced insulin release. XLVI. Physiological role of L-glutamine as a fuel for pancreatic islets. Mol Cell Endocrinol 20: 171–189

    Article  PubMed  CAS  Google Scholar 

  65. Martin DL (1976)Carrier-mediated transport and removal of GABA from synaptic regions. In: Roberts E, Chase TN, Tower DB. (eds) GABA in nervous system function. Raven, New York, pp 347–386

    Google Scholar 

  66. Martin del Rio R, Caballero AL (1980) Presence of γ-aminobutyric acid in rat ovary. J Neurochem 34: 1584–1586

    Article  PubMed  CAS  Google Scholar 

  67. Meier E, Jorgensen OS (1986) γ-Aminobutyric acid affects the developmental expression of neuron-associated proteins in cerebellar granule cell cultures. J Neurochem 46: 1256–1262

    Article  PubMed  CAS  Google Scholar 

  68. Meldrum BS (1975) Epilepsy and γ-aminobutyric acid-mediated inhibition. Int Rev Neurobiol 17: 1–36

    Article  PubMed  CAS  Google Scholar 

  69. Melis GB, Mais V, Paoletti AM, Antinori D, de Ruggiero A, Fioretti P (1986)GABAergic control of anterior pituitary function in humans. In: Racagni G, Donoso AO. (eds) GABA and endocrine function. Raven, New York, pp 219–242

    Google Scholar 

  70. Miachon S, Staun ton D, Chat M (1985) Anatomical distribution and characteristics of [3H]muscimol high affinity binding sites in the dorsolateral pontine tegmentum of the rat brain. Neurochem Int 7: 765–775

    Article  PubMed  CAS  Google Scholar 

  71. Minuk GY, Sarjeant EJ (1985) Insulin and glucagon secretion by the dog pancreas during intravenous and oral administration of gamma aminobutyric acid (GABA). Horm Metab Res 17: 313–314

    Article  PubMed  CAS  Google Scholar 

  72. Möhler H, Malherbe P, Draguhn A, Richards JG (1990) GABAA-receptors: structural requirements and sites of gene expression in mammalian brain. Neurochem Res 15: 199–207

    Article  PubMed  Google Scholar 

  73. Oertel WH, Schmechel DE, Tappaz ML, Kopin IJ (1981) Production of a specific antiserum to rat brain glutamatic acid decarboxylase (GAD) by injection of an antigenantibody complex. Neuroscience 6: 2689–2700

    Article  PubMed  CAS  Google Scholar 

  74. Oertel WH, Mugnaini E, Tappaz ML, Weise VK, Dahl AL, Schmechel DE, Kopin IJ (1982) Central GABAergic innervation of neurointermediate pituitary lobe: biochemical and immunocytochemical study in the rat. Proc Natl Acad Sei USA 79: 675–679

    Article  CAS  Google Scholar 

  75. Okada Y (1979) Properties of glutamate decarboxylase (GAD) in the human insulinoma, a non-neural tissue. Proc Jpn Acad 55: 514–517

    Article  CAS  Google Scholar 

  76. Okada Y (1986)Localization and funetion of GABA in the pancreatic islets. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 223–240

    Google Scholar 

  77. Okada Y, Taniguchi H, Shimada C (1976) High concentration of GABA and high glutamate decarboxylase activity in rat pancreatic islets and human insulinoma. Science 194: 620–622

    Article  PubMed  CAS  Google Scholar 

  78. Okada Y, Taniguchi H, Baba S (1982) High concentration of GABA in the pancreatic islets with special emphasis on B cells. In: Okada Y, Roberts E (eds) Problems in GABA research from brain to bacteria. Excerpta Medica, Amsterdam, pp 379-386

    Google Scholar 

  79. Panten U, Kriegstein EV, Poser W, Schönborn J, Hasselblatt A (1972) Effects of Lleucine and a-ketoisocaproic acid upon insulin secretion and metabolism of isolated pancreatic islets. FEBS Lett 20: 225–228

    Article  PubMed  CAS  Google Scholar 

  80. Passariello N, Giugliano D, Torella R, Sgambato S, Coppola L, Frascolla N (1982) A possible role for γ-aminobutyric acid in the control of the endocrine pancreas. J Clin Endocrinol Metab 54: 1145–1149

    Article  PubMed  CAS  Google Scholar 

  81. Rando RR, Bangerter FW (1977) The in vivo inhibition of GABA-transaminase by gabaculine. Biochem Biophys Res Commun 76: 1276–1281

    Article  PubMed  CAS  Google Scholar 

  82. Reisert I, Wöhrle M, Pilgrim C (1985) Quantitative assessment öf GABA-uptake sites in the neural lobe by electron-microscopic autoradiography. Cell Tissue Res 241: 581–584

    Article  PubMed  CAS  Google Scholar 

  83. Reusens-Billen B, Pirlot X, Remacle C, Hoet JJ, de Gasparo M (1984) Localization of GABA high-affinity binding sites in the pancreas of neonatal rat. Cell Tissue Res 235: 503–508

    Article  PubMed  CAS  Google Scholar 

  84. Rhoads DE, Di Rocco RI, Osburn LD, Petersen NA, Ragupathy E (1984) Stimulation of synaptosomal uptake of neurotransmitter aminoacids by insulin: possible role of insulin as a neuromodulator. Biochem Biophys Res Commun 119: 1198–1204

    Article  PubMed  CAS  Google Scholar 

  85. Rorsman P, Grouse LH, Sorenson RL, Eide RP (1981) Effect of muscimol on glucosestimulated somatostatin and insulin release from the isolated, perfused rat pancreas. Diabetes 30: 168–171

    Article  Google Scholar 

  86. Rorsman P, Berggren PO, Bokvist K, Ericson H, Möhler H, Östenson CG, Smith PA (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride Channels. Nature 341: 233–236

    Article  PubMed  CAS  Google Scholar 

  87. Sakaue M, Saito N, Tanaka C (1987) Immunohistochemical localization of gammaaminobutyric acid (GABA) in the rat pancreas. Histochemistry 86: 365–369

    Article  PubMed  CAS  Google Scholar 

  88. Samols E, Stagner JI (1988) Intra-islet regulation. Am J Med 85: 31–35

    Article  PubMed  CAS  Google Scholar 

  89. Schoch P, Richards JG, Häring P, Takacs B, Stähli C, Staehelin T, Haefeley W, Möhler H (1985) Co-localization of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies. Nature 314: 168–171

    Article  PubMed  CAS  Google Scholar 

  90. Schon F, Kelly JS (1975) Selective uptake of [3H]ß-aianine by glia: association with the glial uptake system for GABA. Brain Res 86: 243–257

    Article  PubMed  CAS  Google Scholar 

  91. Schuit FC, Derde MP, Pipeleers DG (1989) Sensitivity of rat pancreatic A and B cells to somatostatin. Diabetologia 32: 207–212

    Article  PubMed  CAS  Google Scholar 

  92. Sehlin J, Sandström PE (1988) GABA-stimulated chloride Channels in the pancreatic B cells. Diabetologia 31: 542A

    Google Scholar 

  93. Seiler N, Al-Therib MJ (1974) Putrescine catabolism in mammalian brain. Biochem J 144: 29–35

    PubMed  CAS  Google Scholar 

  94. Snodgrass SR (1973) Studies on GABA and protein synthesis. Brain Res 59: 339–348

    Article  PubMed  CAS  Google Scholar 

  95. Stagner JI, Samols E, Marks V (1989) The anterograde and retrograde infusion of glucagon antibodies suggests that A cells are vascularly perfused before D cells within the rat islet. Diabetologia 32: 203–206

    Article  PubMed  CAS  Google Scholar 

  96. Staines WA, Meister B, Melander T, Nagy JI, Hökfelt T (1988) Three-color immunofluorescence histochemistry allowing triple labeling within a Single section. J Histochem Cytochem 36: 145–151

    Article  PubMed  CAS  Google Scholar 

  97. Tallan HH, Moore S, Stein WH (1954) Studies on the free amino acids and related Compounds in the tissues of the cat. J Biol Chem 211: 927–939

    PubMed  CAS  Google Scholar 

  98. Tanaka C, Taniyama K (1986)GABA transport in peripheral tissues: uptake and efflux. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 57–75

    Google Scholar 

  99. Taniguchi H, Okada Y, Shimada C, Baba S (1977) GABA in pancreatic islets. Arch Histol Jpn 40: 87–97

    Article  PubMed  CAS  Google Scholar 

  100. Taniguchi H, Okada Y, Seguchi H, Shimada C, Seki M, Tsutou A, Baba S (1979) High concentration of gamma-aminobutyric acid in pancreatic beta cells. Diabetes 28: 629–633

    Article  PubMed  CAS  Google Scholar 

  101. Taniguchi H, Okada Y, Kobayashi T, Murakami K, Baba S (1979) High concentration of γ-aminobutyric acid and its role on B-cells of pancreatic islets. In: Baba S, Kaneko T, Yanaihara N (eds) Proinsulin, insulin, C-peptide. Excerpta Medica, Amsterdam, pp 335-347

    Google Scholar 

  102. Taniguchi H, Okada Y, Hosoya Y, Baba S (1980) Comparison of uptake of yaminobutyric acid by pancreatic islets and by substantia nigra. Biomed Res 1:175–179

    CAS  Google Scholar 

  103. Taniguchi H, Yoshioka M, Tsutou A, Ejiri K, Tamagawa M, Murakami K, Utsumi M, Baba S, Okada Y (1980) Effect of aminobutyric acid on somatostatin and insulin content of rat cultured islets. Biomed Res 1: 180–182

    CAS  Google Scholar 

  104. Taniguchi H, Murakami K, Yoshioka M, Ejiri K, Ishihara K, Baba S, Okada Y (1982) GABA and insulin in pancreatic islets. In: Okada Y, Roberts E (eds) Problems in GABA research from brain to bacteria. Excerpta Medica, Amsterdam, pp 387-405

    Google Scholar 

  105. Taniguchi H, Yoshioka M, Ejiri K, Ishihara K, Tamagawa M, Hirose Y, Ishihara K, Utsumi M, Baba S, Okada Y (1982) Suppression of somatostatin release and increase of somatostatin content in pancreatic islets by GABA. In: Okada Y, Roberts E (eds) Problems in GABA research from brain to bacteria. Excerpta Medica, Amsterdam, pp 406-412

    Google Scholar 

  106. Thirbly RC, Stevens MH, Blair AJ, Petty F, Crawford IL, Taylor IL, Walsh JH, Feldman M (1988 ) Effect of GABA on basal and vagally mediated gastric acid secretion and hormone release in dogs. Am J Physiol 254: G723–G731

    Google Scholar 

  107. Tunnicliff G (1989 ) Inhibitors of brain GABA aminotransferase. Comp Biochem Physiol 93A: 247–254

    Article  CAS  Google Scholar 

  108. Unger RH, Orci L (1989)Glucagon secretion and metabolism in man. In: De Groot LJ (ed) Endicrinology, vol.2. Saunders, Philadelphia, pp 1318–1332

    Google Scholar 

  109. Vincent SR, Brown JC (1988) Autoradiographic studies of the γ-aminobutyric acid (GABA) system in the rat pancreas. Histochemistry 88: 171–173

    Article  Google Scholar 

  110. Vincent SR, Hökfelt T, Wu JY (1982) GABA neuron systems in hypothalamus and the pituitary gland. Neuroendocrinology 34: 117–125

    Article  PubMed  CAS  Google Scholar 

  111. Vincent SR, Hökfelt T, Wu JY, Eide RP, Morgan LM, Kimmel JR (1983) Immunohistochemical studies of the GABA system in the pancreas. Neuroendocrinology 36: 197–204

    Article  PubMed  CAS  Google Scholar 

  112. Wisden W, Morris BJ, Darlison MG, Hunt SP, Barnard EA (1988) Distinct GABAA receptor a subunit mRNAs show differential patterns of expression in bovine brain. Neuron 1: 937–947

    Article  PubMed  CAS  Google Scholar 

  113. Wu JY, Lin CT, Lin H, Xu Y, Liu JW, Hwang BH, Wei SC (1986)Immunochemical characterization and immunohistochemical localization of glutamate decarboxylase and GABA transaminase in peripheral tissues. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 19–34

    Google Scholar 

  114. Yazulla S, Studholme KM, Vitorica J, de Blas AL (1989) Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas. J Comp Neurol 280: 15–26

    Article  PubMed  CAS  Google Scholar 

  115. Young W, Kuhar M (1979) A new method for receptor autoradiography: 3H-opioid receptors in rat brain. Brain Res 179: 255–270

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gilon, P., Remacle, C. (1992). GABA and Endocrine Cells of the Gastro-entero-pancreatic System: A Review. In: Erdö, S.L. (eds) GABA Outside the CNS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76915-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76915-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76917-7

  • Online ISBN: 978-3-642-76915-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics