Skip to main content

GABAergic Action on Cholinergic Axon Terminals in the Superior Cervical Ganglion

  • Conference paper
Book cover GABA Outside the CNS

Abstract

Interactions between different neuronal or transmitter systems are considered to play an important role in the regulation of the function of the mammalian sympathetic ganglia. The excitatory effect of acetylcholine (ACh) in the superior cervical ganglia (SCG) has been well documented by electrophysiological techniques [18, 27, 35, 37]. The elements of the ACh system (choline acetyltransferase, ChAT [4, 7, 14, 22, 29, 39, 42]; ACh [10, 36]; acetylcholinesterase, AChE [24, 28, 29, 46]; muscarinic acetylcholine receptor, mAChR [8, 9, 26, 34, 41]; nicotinic acetylcholine receptor, nAChR [20, 21, 25, 38]) have also been demonstrated. Other neurotransmitters, such as γ-aminobutyric acid (GABA), are known to effect synaptic transmission between preganglionic axon terminals and postganglionic sympathetic neurons [1, 5, 11, 16, 23]. More recently, an immunocytochemical technique [13] was used to demonstrate GABA-positive fibers [12, 31, 45] and GABA-positive cells [44] in the SCG. What is the morphological basis of the GABAergic interaction with cholinergic nerve fibers? How does GABA affect the release of ACh from cholinergic axon terminals? What kind of GABA receptors play a role in the GABAergiccholinergic interaction? These questions are addressed in the present paper.

This work was supported by OTKA (518141), ETT (457) Ministry of Health, Hungary and the Deutsche Forschungsgemeinschaft (Wo 279/8-2), BRD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams PR, Brown DA, Saunders L (1975) Actions of gamma-aminobutyric acid on sympathetic ganglion celis. J Physiol 250: 85–120

    PubMed  CAS  Google Scholar 

  2. Arbab MA, Wiklund L, Svendgaard NA (1986) Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience 19: 695–708

    Article  PubMed  CAS  Google Scholar 

  3. Bertilsson L, Suria A, Costa E (1976) Gamma-aminobutyric acid in rat superior cervical ganglion. Nature 260: 540–541

    Article  PubMed  CAS  Google Scholar 

  4. Black IB, Hendry LA, Iversen LL (1971) Trans-synaptic regulation of growth and development of adrenergic neurons in a mouse sympathetic ganglion. Brain Res 34: 229–240

    Article  PubMed  CAS  Google Scholar 

  5. Bowery NG, Brown DA (1974) Depolarizing actions of gamma-aminobutyric acid and related Compounds on rat superior cervical ganglia in vitro. Br J Pharmacol 50: 205–218

    PubMed  CAS  Google Scholar 

  6. Brown DA, Higgins AJ (1979) Presynaptic effects of γ-aminobutyric acid in isolated rat superior cervical ganglia. Br J Pharmacol 66: 108P–109P

    PubMed  CAS  Google Scholar 

  7. Buckley G, Consolo S, Giacobini E, Sjöqvist F (1967) Cholinacetyläse in innervated and denervated sympathetic ganglia and ganglion cells of the cat. Acta Physiol Scand 71: 348–356

    Article  PubMed  CAS  Google Scholar 

  8. Burt DR (1978) Muscarinic receptor binding in rat sympathetic ganglia is unaffected by denervation. Brain Res 143: 573–579

    Article  PubMed  CAS  Google Scholar 

  9. Capuzzo A, Borasio PG, Fabbri E (1989) Presynaptic muscarinic receptors in guineapig superior cervical ganglion. Neurosci Lett 104: 88–92

    Article  PubMed  CAS  Google Scholar 

  10. Collier B (1969) The preferential release of newly synthesized transmitter by a sympathetic ganglion. J Physiol 205: 341–352

    PubMed  CAS  Google Scholar 

  11. De Groat WC, Lalley PM, Block M (1971) The effects of bicuculline and GABA on the superior cervical ganglion of the cat. Brain Res 25: 665–668

    Article  Google Scholar 

  12. Dobó E, Kása P, Wenthold RJ, Joö F, Wolff JR (1989) Evidence for GABAergic fibers entering the superior cervical ganglion of rat from the preganglionic nerve trunk. Histochemistry 92: 133–136

    Article  PubMed  Google Scholar 

  13. Dobó E, Kása P, Wenthold RJ, Wolff JR (1989) Pronase treatment increases the staining intensity of GABA-immunoreactive struetures in the paravertebral sympathetic ganglia. Histochemistry 93: 13–18

    Article  PubMed  Google Scholar 

  14. Dolezalova, Giacobini E, Giacobini G, Rossi A, Toschi G (1974) Developmental variations of choline acetyl-transferase, dopamine-beta-hydroxylase and monoamineoxidase in chicken embryo and chicken sympathetic ganglia. Brain Res 73: 309–320

    Article  PubMed  CAS  Google Scholar 

  15. Dun NJ (1980) Ganglionic transmission: electrophysiology and pharmacology. Fed Proc 39: 2982–2989

    PubMed  CAS  Google Scholar 

  16. Eugéne D (1987) Fast non-cholinergic depolarizing postsynaptie potentials in neurons of rat superior cervical ganglia. Neurosci Lett 78: 51–56

    Article  PubMed  Google Scholar 

  17. Farkas Z, Kása P, Balcar VJ, Joó F, Wolff JR (1986) Type A and B GABA receptors mediale inhibition of acetylcholine release from cholinergic nerve terminals in the superior cervical ganglion of rat. Neurochem Int 8: 565–572

    Article  PubMed  CAS  Google Scholar 

  18. Feldberg W, Gaddum JH (1934) The chemical transmitter at synapses in sympathetic ganglion. J Physiol 81: 305–319

    PubMed  CAS  Google Scholar 

  19. Fonnum F (1975) A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 24: 407–409

    Article  PubMed  CAS  Google Scholar 

  20. Fumagalli L, De Renzis G (1980) Alpha-bungarotoxin binding sites in the rat superior cervical ganglion are influenced by postganglionic axotomy. Neuroscience 5: 611–616

    Article  PubMed  CAS  Google Scholar 

  21. Fumagalli L, De Renzis G, Miani N (1976) Acetylcholine receptors: number and distribution in intact and deafferented superior cervical ganglion of the rat. J Neurochem 27: 47–52

    Article  PubMed  CAS  Google Scholar 

  22. Gaetani S, Mengheri E, Spadoni MA, Rossi A, Toschi G (1975) Effects of litter size on protein, choline acetyltransferase (CAT), and dopamine-beta-hydroxylase (DBH) of a mouse sympathetic ganglion. Brain Res 86: 75–84

    Article  PubMed  CAS  Google Scholar 

  23. Galvan M, Gräfe P, Bruggencate G (1980) Presynaptic actions of 4-aminopyridine and gamma-aminobutyric acid on rat sympathetic ganglia in vitro. Naunyn Schmifedebergs Arch Pharmacol 314: 141–147

    Article  CAS  Google Scholar 

  24. Gisiger V, Vigny M, Gautron J, Rieger F (1978) Acetylcholinesterase of rat sympathetic ganglion: molecular forms, localization and effects of denervation. J Neurochem 30: 501–516

    Article  PubMed  CAS  Google Scholar 

  25. Giotti C, Spagnoli D, Omini C, Clementi F (1985) Alpha-bungarotoxin and P15 toxin binding site in mammalian sympathetic ganglia. Neurosci Lett 57: 227–231

    Article  Google Scholar 

  26. Hadjiconstantinou M, Potter PE, Neff NH (1982) Trans-synaptic modulation via muscarinic receptors of serotonin-containing small intensely fluorescent cells of superior cervical ganglion. J Neurosci 2: 1836–1839

    PubMed  CAS  Google Scholar 

  27. Karczmar AG (1970)History of the research with antiCholinesterase agents. In: Karczmar AG. (ed) AntiCholinesterase agents, Vol 1, Sect 13. Pergamon, New York, pp 1–44

    Google Scholar 

  28. Kása P, Csernovszky E (1967) Electron microscopic localization of acetylcholinesterase in the superior cervical ganglion of the rat. Acta Histochem 28: 274–285

    PubMed  Google Scholar 

  29. Kása P, Dames W, Rakonczay Z, Guiya K, Joö F, Wolff JR (1985) Modulation of the acetylcholine system in the superior cervical ganglion of rat: effects of GABA and hypoglossal nerve implantation after in vivo GABA treatment. J Neurochem 44: 1363–1372

    Article  PubMed  Google Scholar 

  30. Kasa P, Dobö E, Wolff JR (1990) Distribution of cholinergic fibers and synapses in the mouse superior cervical ganglion: light and electron microscopical immunohistöchemistry for choline acetyltransferase. Neuroscience (to be published)

    Google Scholar 

  31. Kása P, Joó F, Dobó E, Wenthold RJ, Ottersen OP, Storm-Mathisen J, Wolff JR (1988) Heterogenous distribution of GABA-immunoreactive nerve fibers and axon terminals in the superior cervical ganglion of adult rat. Neuroscience 26: 635–644

    Article  PubMed  Google Scholar 

  32. Lindh B, Staines W, Hökfelt T, Terenius L, Salvaterra PM (1986) Immunohistochemical demonstration of choline acetyltransferase-immunoreactive preganglionic nerve fibers in guinea-pig autonomic ganglia. Proc Natl Acad Sei USA 83: 5316–5320

    Article  CAS  Google Scholar 

  33. Matthews MR (1983)The ultrastructure of junetions in sympathetic ganglia of mammals. In: Elfvin LG. (ed) Autonomic ganglia. Wiley, Chichester, pp 27–66

    Google Scholar 

  34. Newberry NR, Priestley T, Woodruff GN (1985) Pharmacological distinetion between two muscarinic responses on the isolated superior cervical ganglion of the rat. Eur J Pharmacol 116: 191–192

    Article  PubMed  CAS  Google Scholar 

  35. Paton WDM, Perry WLM (1953) The relationship between depolarization and block in the cat’s superior cervical ganglion. J Physiol 119: 43–57

    PubMed  CAS  Google Scholar 

  36. Perry WLM (1953) Acetylcholine release in the cat’s superior cervical ganglion. J Physiol 119: 439–454

    PubMed  CAS  Google Scholar 

  37. Prigioni I, Casella C (1984) Acetylcholine-induced back-firing in the preganglionic trunk of the rat superior cervical ganglion. J Auton Nerv Syst 10: 19–25

    Article  PubMed  CAS  Google Scholar 

  38. Smolen AJ (1983) Specific binding of alpha-bungarotoxin synaptic membranes in rat sympathetic ganglion: Computer best-fit analysis of electron microscope autoradiographs. Brain Res 289: 177–188

    Article  PubMed  CAS  Google Scholar 

  39. Sorimachi M, Kataoka K (1974) Developmental change of choline acetyltransferase in the eiliary and the superior cervical ganglion of the chick. Brain Res 70: 123–130

    Article  PubMed  CAS  Google Scholar 

  40. Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  41. Taniguchi T, Kurahashi K, Fujiwara M (1983) Alterations in muscarinic cholinergic receptors after preganglionic denervation of the superior cervical ganglion in cats. J Pharmacol Exp Hier 224: 674–678

    CAS  Google Scholar 

  42. Viana GB, Kauffman FC (1984) Cholinesterase activity in the rat superior cervical ganglion: effect of denervation and axotomy. Brain Res 304: 37–45

    Article  PubMed  CAS  Google Scholar 

  43. Wenthold RJ, Zempel JM, Parakkal MH, Reeks KA, Altschuler RA (1986) Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Res 380: 7–18

    Article  PubMed  CAS  Google Scholar 

  44. Wolff JR, Joó F, Kása P, Storm-Mathisen J, Toldi J, Balcar V (1986) Presence of neurons with GABA-like immunoreactivity on the superior cervical ganglion of the rat. Neurosci Lett 71: 157–162

    Article  PubMed  CAS  Google Scholar 

  45. Wolff JR, Kasa P, Dobö E, Wenthold RJ, Joö F (1989) Quantitative analysis of the number and distributions of neurons richly innervated by GABA-immunoreactive axons in the rat superior cervical ganglion. J Comp Neuroi 282: 264–273

    Article  CAS  Google Scholar 

  46. Yamauchi A, Lever JD (1971) Correlations between formol fluorescence and acetylcholinesterase (AChE) staining in the superior cervical ganglion of normal rat, pig and sheep. J Anat 110: 435–443

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kása, P., Dobó, E., Wolff, J.R. (1992). GABAergic Action on Cholinergic Axon Terminals in the Superior Cervical Ganglion. In: Erdö, S.L. (eds) GABA Outside the CNS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76915-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76915-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76917-7

  • Online ISBN: 978-3-642-76915-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics