Skip to main content

L-Glutamate Decarboxylase Immunoreactivity in the Sympathoadrenal System

  • Conference paper
GABA Outside the CNS

Abstract

The role of GABA as an inhibitory neurotransmitter in the mammalian brain has been well established. In recent years, increasing evidence has been presented to show that GABA may act as a neurotransmitter also in parts of the peripheral nervous system [20, 21, 51]. In the myenteric plexus of the gut an autonomic neurotransmitter role for GABA has been proposed by several authors [29–32], In sympathetic ganglia, a specific GABA uptake system [11, 62], GABA receptors [12, 13], and the depolarizing effect of GABA on sympathetic neurons [1, 12, 13] have been described in previous studies. The presence of GABA and the GABA-synthesizing enzyme L-glutamate decarboxylase (GAD) in sympathetic ganglia was also shown by biochemical [8, 33, 55] and, recently, immunohistochemical methods [14, 15, 24–28, 34, 35, 38, 44, 57, 58]. Studies have now been carried out in order to investigate the expression and distribution of GAD in the developing sympathoadrenal system and to further analyze the presence and localization of GAD in different parts of the sympathetic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams PR, Brown DA (1975) Actions of γ-Aminobutyric acid on sympathetic ganglion cells. J Physiol 250: 85–120

    PubMed  CAS  Google Scholar 

  2. Ahonen M, Soinila S, Joh TH (1987) Pre- and postnatal development of rat retroperitoneal paraganglia. J Auton Nerv Syst 18: 111–120

    Article  PubMed  CAS  Google Scholar 

  3. Ahonen M, Joh TH, Wu J-Y, Häppölä O (1989) Immunocytochemical localization of L-glutamate decarboxylase and catecholamine-synthesizing enzymes in the retroperitoneal sympathetic tissue of the newborn rat. J Auton Nerv Syst 26: 89–96

    Article  PubMed  CAS  Google Scholar 

  4. Ahonen M, Soinila S, Wu J-Y, Häppölä O (1989) L-glutamate decarboxylase immunoreactivity in developing sympathetic tissues of the rat. J Auton Nerv Syst 27: 155–164

    Article  PubMed  CAS  Google Scholar 

  5. Alho H, Fujimoto M, Guidotti A, Hanbauer I, Kataoka Y, Costa E (1986) γ-Aminobutyric acid (GABA) in the adrenal medulla: location, pharmacology and function. In: Panula P, Päivärinta H, Soinila S. (eds) Neurohistochemistry: modern methods and applications. Liss, New York, pp 453–464

    Google Scholar 

  6. Alho H, Hanbauer I, Guidotti A, Costa E (1987)Gamma-aminobutyric acid (GABA) signalling in the adrenal medulla. In: Heym C. (ed) Histochemistry and cell biology of autonomic neurons and paraganglia. Springer, Berlin, Heidelberg, New York, pp 61–66 (Experimental brain research series, vol 16)

    Google Scholar 

  7. Ayer-LeLievre C, Fontaine-Perus J (1982) The neural crest: its relation with APUD and paraneuron concepts. Arch Histol Jpn 45: 409–427

    Article  CAS  Google Scholar 

  8. Bertilsson L, Suria A, Costa E (1976) Y-Aminobutyric acid in rat superior cervical ganglion. Nature 260: 540–541

    Article  PubMed  CAS  Google Scholar 

  9. Black IB (1978) Sympathetic neurone development. Trends Neurosci 1: 101–104

    Google Scholar 

  10. Böck P (1982) Paraganglia. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  11. Bowery NG, Brown DA (1972) γ-Aminobutyric acid uptake by sympathetic ganglia. Nature 238: 89–91

    Article  CAS  Google Scholar 

  12. Bowery NG, Brown DA (1974) Depolarizing actions of γ-aminobutyric acid and related Compounds on rat superior cervical ganglia in vitro. Br J Pharmacol 50: 205–218

    PubMed  CAS  Google Scholar 

  13. De Groat WC (1970) The actions of γ-aminobutyric acid and related amino acids on mammalian autonomic ganglia. J Pharmacol Exp Ther 172: 384–396

    PubMed  Google Scholar 

  14. Dobó E, Kása P, Wenthold RJ, Joö F, Wolff JR (1989) Evidence for GABAergic fibers entering the superior cervical ganglion of rat from the preganglionic nerve trunk. Histochemistry 92: 133–136

    Article  PubMed  Google Scholar 

  15. Dobó E, Kása P, Wenthold RJ, Wolff JR (1989) Pronase treatment increases the staining intensity of GABA-immunoreactive structures in the paravertebral sympathetic ganglia. Histochemistry 93: 13–18

    Article  PubMed  Google Scholar 

  16. Eränkö O (1967) The practical histochemical demonstration of catecholamines by formaldehyde-induced fluorescence. J R Microsc Soc 87: 259–276

    PubMed  Google Scholar 

  17. Eränkö L, Eränkö O (1972) Effect of hydrocortisone on histochemically demonstrable catecholamines in the sympathetic ganglia and extra-adrenal chromaffin tissue of the rat. Acta Physiol Scand 84: 125–133

    Article  PubMed  Google Scholar 

  18. Eränkö L, Eränkö O (1977)Developmental aspects of SIF cells. In: Costa E, Gessa GL. (eds) Advances in biochemical psychopharmacology, Vol 16. Raven, New York, pp 519–524

    Google Scholar 

  19. Eränkö O, Pickel VM, Härkönen M, Eränkö L, Joh TH, Reis DJ (1982) Effect of hydrocortisone on catecholamines and the enzymes synthesizing them in the developing sympathetic ganglion. Histochem J 14: 461–478

    Article  PubMed  Google Scholar 

  20. Erdö SL (1985) Peripheral GABAergic mechanisms. TIPS 6: 205–208

    Google Scholar 

  21. Erdö SL, Wolff JR (1990) γ-Aminobutyric acid outside the mammalian brain. J Neurochem 54: 363–372

    Article  PubMed  Google Scholar 

  22. Fernholm M (1972) On the appearance of monoamines in the sympathetic systems and the chromaffin tissue in the mouse embryo. Z Anat Entwickl-Gesch 135: 350–361

    Article  CAS  Google Scholar 

  23. Grillo M (1966) Electron microscopy of sympathetic tissues. Pharmacol Rev 18: 387–399

    PubMed  CAS  Google Scholar 

  24. Häppölä O, Soinila S, Päivärinta H, Eränkö L, Wu J-Y, Panula P (1985) Glutamic acid decarboxylase (GAD) and GABA aminotransferase (GABA-T) immunoreactivity in the superior cervical ganglion of the rat. Scandinavian Neurohistochemistry Meeting, p 15 (abstr)

    Google Scholar 

  25. Häppölä O, Räivärinta H, Soinila S, Wu J-Y, Panula P (1986) Localization of Lglutamic acid decarboxylase (GAD) and GABA transaminase (GABA-T) immunoreactivity in the rat superior cervical ganglion. Soc Neurosci Abstr: 1535

    Google Scholar 

  26. Häppölä O, Päivärinta H, Soinila S, Wu J-Y, Panula P (1987) Localization of Lglutamate decarboxylase and GABA transaminase immunoreactivity in the sympathetic ganglia of the rat. Neuroscience 21: 271–281

    Article  PubMed  Google Scholar 

  27. Häppölä O, Päivärinta H, Soinila S, Wu J-Y, Panula P (1987) Immunocytochemical demonstration of GABA-metabolizing enzymes in the superior cervical and nodose ganglia of the rat. Exp Brain Res 16: 145–148

    Google Scholar 

  28. Hills JM, King BF, Mirsky R, Jessen KR (1988) Immunohistochemical localization and electrophysiological actions of GABA in prevertebral ganglia in guinea-pig. J Auton Nerv Syst 22: 129–140

    Article  PubMed  CAS  Google Scholar 

  29. Jessen KR, Hills JM, Saffrey MJ (1986) Immunohistochemical demonstration of GABAergic neurons in the enteric nervous system. J Neurosci 6: 1628–1634

    PubMed  CAS  Google Scholar 

  30. Jessen KR, Mirsky R, Dennison ME, Burnstock G (1979) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature 281: 71–74

    Article  PubMed  CAS  Google Scholar 

  31. Jessen KR, Mirsky R, Hills JM (1987) GABA as an autonomic neurotransmitter: studies on intrinsic GABAergic neurons in the myenteric plexus of the gut. TINS 10: 255–262

    CAS  Google Scholar 

  32. Jessen KR, Hills JM, Dennison ME, Mirsky R (1983) γ-Aminobutyrate as an autonomic neurotransmitter: release and uptake of [3H]-γ-aminobutyrate in guinea-pig large intestine and cultured enteric neurons using physiological methods and electron microscopic autoradiography. Neuroscience 10: 1427–1442

    Article  PubMed  CAS  Google Scholar 

  33. Kanazawa I, Iversen LL, Kelly JS (1976) Glutamate decarboxylase activity in the rat posterior pituitary, pineal gland, dorsal root ganglion and superior cervical ganglion. J Neurochem 27: 1267–1269

    Article  PubMed  CAS  Google Scholar 

  34. Karhula T, Häppölä O, Joh TH, Wu J.Y (1988) Localization of L-glutamate decarboxylase immunoreactivity in the major pelvic ganglion and in the coeliacsuperior mesenteric ganglion complex of the rat. Histochemistry 90: 255–260

    Article  PubMed  CAS  Google Scholar 

  35. Kása P, Joó F, Dobó E, Wenthold RJ, Ottersen OP, Storm-Mathisen J, Wolff JR (1988) Heterogenous distribution of GABA-immunoreactive nerve fibers and axon terminals in the superior cervical ganglion of adult rat. Neuroscience 26: 635–644

    Article  PubMed  Google Scholar 

  36. Kataoka Y, Gutman Y, Guidotti A, Panula P, Wroblewski J, Cosenza-Murphy D, Wu J-Y, Costa E (1984) Intrinsic GABAergic system of adrenal chromaffin cells. Proc Natl Acad Sei USA 81: 3218–3222

    Article  CAS  Google Scholar 

  37. Kataoka Y, Fujimoto M, Alho H, Guidotti A, Geffard M, Kelly GD, Hanbauer I (1986) Intrinsic gamma-aminobutyric acid reeeptors modulate the release of catecholamine from canine adrenal gland in situ. J Pharmacol Exp Ther 239: 584–590

    PubMed  CAS  Google Scholar 

  38. Kenny SL, Ariano MA (1986) The immunofluorescence localization of glutamate decarboxylase in the rat cervical ganglion. J Auton Nerv Syst 17: 211–215

    Article  PubMed  CAS  Google Scholar 

  39. Kitayama S, Tsujimoto A (1986)Involvement of GABAergic mechanism in the catecholamine secretion from adrenal medulla. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 249–259

    Google Scholar 

  40. Landis SC, Patterson PH (1981) Neural crest cell lineages. Trends Neurosci 4: 172–175

    Article  CAS  Google Scholar 

  41. Le Douarin N (1973) A biological cell labelling technique and its use in experimental embryology. Dev Biol 30: 217–222

    Article  PubMed  Google Scholar 

  42. Maggi CA, Santicioli P, Meli A (1985) GABA inhibits neurotransmission in rat pelvic ganglia. J Pharm Pharmacol 37: 349–351

    Article  PubMed  CAS  Google Scholar 

  43. Päivärinta H, Soinila S, Eränkö O, Joh TH (1985) Phenylethanolamine-N-methyltransferase-immunoreactive cells in developing rat superior cervical ganglion and the effect of hydrocortisone on their number. Int J Dev Neurosci 3: 9–18

    Article  Google Scholar 

  44. Päivärinta H, Eränkö L, Häppölä O, Soinila S, Steinbusch H, Wu J-Y, Panula P (1987) The effect of hydrocortisone on the number of 5-hydroxytryptamine- and glutamic acid decarboxylase-immunoreactive cells in the superior cervical ganglion of the rat. Exp Brain Res 16: 305–309

    Google Scholar 

  45. Papka RE (1972) Ultrastructural and fluorescence histochemical studies of developing sympathetic ganglia in the rabbit. Am J Anat 134: 337–363

    Article  PubMed  CAS  Google Scholar 

  46. Sangiah S, Borowitz JL, Yim GKW (1974) Actions of GABA, picrotoxin and bicuculline on adrenal medulla. Eur J Pharmacol 27: 130–135

    Article  PubMed  CAS  Google Scholar 

  47. Siegrist G, Dolivo M, Dunant Y, Foroglou-Kerameus C, de Ribaupierre F, Rouiller C (1968) Ultrastructure and fuction of the chromaffin cells in the superior cervical ganglion of the rat. J Ultrastruct Mol Struct Res 25: 381–407

    CAS  Google Scholar 

  48. Soinila S (1984) Pre- and postnatal development of the small intensely fluorescent cells in the rat superior cervical ganglion. Int J Dev Neurosci 2: 65–76

    Article  Google Scholar 

  49. Soinila S, Ahonen M, Joh TH, Steibusch HWM (1988) 5-hydroxytryptamine and catecholamines in the developing sympathetic cells of the rat. J Auton Nerv Syst 22: 193–202

    Article  PubMed  CAS  Google Scholar 

  50. Stanton HC (1963) Mode of action of GABA on the cardiovascular system. Arch Int Pharmacodyn Ther 143: 195–204

    PubMed  CAS  Google Scholar 

  51. Tanaka C (1985) γ-Aminobutyric acid in peripheral tissues. Life Sei 37: 2221–2235

    Article  CAS  Google Scholar 

  52. Taniyama K, Tanaka C (1986)GABAergic mechanisms and their functional relevance in the urinary bladder. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 175–183

    Google Scholar 

  53. Taxi J (1979) The chromaffin and chromaffin-like cells in the autonomic nervous system. Int Rev Cytol 57: 283–343

    Article  PubMed  CAS  Google Scholar 

  54. Verhofstad AAJ, Hökfelt T, Goldstein M, Steinbusch HWM, Joosten HWJ (1979) Appearance of tyrosine hydroxylase. Aromatic amino-acid decarboxylase, dopamine hydroxylase and phenylethanolamine-N-methyltransferase during the ontogenesis of the adrenal medulla. Cell Tissue Res 200: 1–13

    Article  PubMed  CAS  Google Scholar 

  55. Waniewski RA, Suria A (1977) Alterations in γ-aminobutyric acid content in the rat superior cervical ganglion and pineal gland. Life Sei 21: 1129–1142

    Article  CAS  Google Scholar 

  56. Williams TH (1967) Electron microscopic evidence for an autonomic interneuron. Nature 214: 309–310

    Article  PubMed  CAS  Google Scholar 

  57. Wolff JR, Joó F, Kása P, Storm-Mathisen J, Toldi J, Balcar VJ (1986) Presenee of neurons with GABA-like immunoreactivity in the superior cervical ganglion of the rat. Neurosci Lett 71: 157–162

    Article  PubMed  CAS  Google Scholar 

  58. Wolff JR, Kasa P, Dobö E, Wenthold RJ, Joö F (1989) Quantitative analysis of the number and distribution of neurons richly innervated by GABA-immunoreactive axons in the rat superior cervical ganglion. J Comp Neurol 282: 264–273

    Article  PubMed  CAS  Google Scholar 

  59. Wu J-Y (1976)Purification and properties of L-glutamate decarboxylase (GAD) and GABA-aminotransferase (GABA-T). In: Roberts E, Chase T, Tower D. (eds) GABA in nervous system function. Raven, New York, pp 7–55

    Google Scholar 

  60. Wu J-Y (1982) Purification and characterization of cysteic acid and cysteine sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain. Proc Natl Acad Sei USA 79: 4270–4274

    Article  CAS  Google Scholar 

  61. Wu J-Y, Lin C-T, Brandon C, Chan T-S, Möhler H, Richards JG (1982)Regulation and immunocytochemical characterization of glutamic acid decarboxylase. In: Palay S, Palay V. (eds) Cytochemical methods in neuroanatomy. Liss, New York, pp 279–296

    Google Scholar 

  62. Young JAC, Brown DA, Kelly JS, Schon F (1973) Autoradiographic localization of sites of [3H]-γ-aniinobutyric acid accumulation in peripheral autonomic ganglia. Brain Res 63: 479–486

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Häppölä, O., Karhula, T., Päivärinta, H., Soinila, S., Wu, JY., Ahonen, M. (1992). L-Glutamate Decarboxylase Immunoreactivity in the Sympathoadrenal System. In: Erdö, S.L. (eds) GABA Outside the CNS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76915-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76915-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76917-7

  • Online ISBN: 978-3-642-76915-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics