Skip to main content

GABA Receptors Inside and Outside the Brain

  • Conference paper

Abstract

Establishment of any substance as a neurotransmitter or neurohormone requires the fulfillment of defined criteria [56]; this is often easier outside than inside the brain. However, the reverse appears to be true for γ-aminobutyric acid (GABA). Evidence for its localized presence and discrete release from neuronal processes has been demonstrated in brain tissue and inhibitory neuronal responses to exogenous GABA compare favourably with the synaptic response to Stimulation of inhibitory pathways [45, 24]. The significance of GABA in these mechanisms is substantiated by the use of selective antagonists such as bicuculline and 2-hydroxysaclofen or phaclofen [22, 32, 38], which substantially block synaptically mediated responses including that to applied GABA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenees

  1. Adams PR, Brown DA (1975) Actions of γ-aminobutyric acid on sympathetic ganglion cells. J Physiol (Lond) 250: 85–120.

    CAS  Google Scholar 

  2. Asano T, Ui M, Ogasawara, N (1985) Prevention of the agonist binding to γ-aminobutyric acid B receptor by guanine nucleotides and islet-activating protein, pertussis toxin, in bovine cerebral cortex. J Biol Chem 260: 12653–12658

    PubMed  CAS  Google Scholar 

  3. Baumann PA, Wicki P, Stierlin C, Waldmeier PC (1990) Investigations on GABAB receptor-mediated autoinhibition of GABA release. Naunyn Schmiedebergs Arch Pharmacol 341: 88–93

    Article  CAS  Google Scholar 

  4. Bazemore AW, Elliott KAC, Florey E (1957) Isolation of Factor I. J Neurochem 1: 334–339

    Article  CAS  Google Scholar 

  5. Bertilsson L, Suria A, Costa E (1976) γ-Aminobutyric acid in rat superior cervical ganglion. Nature 260: 540–541

    Article  PubMed  CAS  Google Scholar 

  6. Bindman LJ, Lippold OCJ, Redfearn JWT (1962) The nonselective blocking action of γ-aminobutyric acid in the sensory cerebral cortex of the rat. J Physiol (Lond) 162: 105–120

    CAS  Google Scholar 

  7. Bowery NG (1989) GABA b receptors and their significance in mammalian pharmacol ogy. Trends Pharmacol Sei 10: 401–407

    Article  CAS  Google Scholar 

  8. Bowery NG, Brown DA (1972) γ-Aminobutyric acid uptake by sympathetic ganglia. Nature New Biol 238: 89–91

    Article  PubMed  CAS  Google Scholar 

  9. Bowery NG, Brown DA Depolarizing actions of γ-aminobutyric acid and related Compounds on rat superior cervical ganglia in vitro. Br J Pharmacol 50: 205-218

    Google Scholar 

  10. Bowery NG, Brown DA, Collins GGS, Galvan M, Marsh S, Yamini G (1976) Indirect effects of amino acids on sympathetic ganglion cells mediated through the release of γ-aminobutyric acid from glial cells. Br J Pharmacol 57: 73–91

    PubMed  CAS  Google Scholar 

  11. Bowery NG, Brown DA, Marsh S (1979) γ-Aminobutyric acid efflux from sympathetic glial cells: effect of depolarizing agents. J Physiol (Lond) 293: 75–101

    CAS  Google Scholar 

  12. Bowery NG, Brown DA, White RD, Yamini G (1979) 3H-γ-aminobutyric acid uptake into neuroglial cells of rat superior cervical sympathetic ganglion. J Physiol (Lond) 293: 51–74

    CAS  Google Scholar 

  13. Bowery NG, Doble A, Hill DR, Hudson AL, Shaw JS, Turnbull MJ, Warrington R (1981) Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur J Pharmacol 71: 53–70

    Article  PubMed  CAS  Google Scholar 

  14. Bowery NG, Dray A (1978) Reversal of the action of amino acid antagonists by barbiturates and other hypnotic drugs. Br J Pharmacol 63: 179–215

    Google Scholar 

  15. Bowery NG, Hill DR, Hudson AL (1983) Characteristics of GABAb receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 78: 191–206

    PubMed  CAS  Google Scholar 

  16. Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull MJ (1980) Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283: 92–94

    Article  PubMed  CAS  Google Scholar 

  17. Bowery NG, Hudson AL (1979) γ-Aminobutyric acid reduces the evoked release of 3H-noradrenaline from sympathetic nerve terminals. Br J Pharmacol 66: 108P

    Google Scholar 

  18. Bowery NG, Jones GP, Neal MJ (1976) Selective inhibition of neuronal GABA uptake by cis-l,3-aminocyclohexane carboxylic acid. Nature 264: 281–284

    Article  CAS  Google Scholar 

  19. Cherubini E, North KA (1984) Inhibiton of calcium spikes and transmitter release by γ-aminobutyric acid in the guinea-pig myenteric plexus. Br J Pharmacol 82: 101–105

    PubMed  CAS  Google Scholar 

  20. Crawford JM, Curtis DR (1964) The excitation and depression of mammalian cortical neurones by amino acids. Br J Pharmacol 23: 313–329

    CAS  Google Scholar 

  21. Curtis DR (1978) Pre- and non-synaptic activities of GABA and related amino acids in the mammalian nervous system. In: Fonnum F. (ed.) Amino acids as chemical transmitters. Plenum, New York, pp 55–86

    Google Scholar 

  22. Curtis DR, Duggan AW, Felix D, Johnston GAR (1970) GABA, bicuculline and central inhibition. Nature 226: 1222–1224

    Article  PubMed  CAS  Google Scholar 

  23. Curtis DR, Game CJA, Johnston GAR, McCulloch RM (1974) Central effects of ß-(pchlorophenyl)-γ-aminobutyric acid. Brain Res 70: 493–499

    Article  PubMed  CAS  Google Scholar 

  24. Curtis DR, Johnston GAR (1974) Amino acid transmitters in the mammalian central nervous system. Ergeb. Physiol 69: 97–188

    PubMed  CAS  Google Scholar 

  25. Curtis DR, Phillis JW, Watkins JC (1959) The depression of spinal neurones by yamino-/ i-butyric acid and ß-alanine. J Physiol (Lond) 146: 185–203

    CAS  Google Scholar 

  26. Davies CH, Collingridge GL (1990) Involvement of presynaptic GABAb receptors in paired pulse depression of GABAergic IPSPs in rat hippocampal slices. In: Bowery NG, Bittiger H, Olpe HR (eds.) GABAb receptors in mammalian funetion. Wiley, Chichester (to be published)

    Google Scholar 

  27. Davies J, Watkins JC (1974) The action of ß-phenyl-GABA derivatives on neurones of the cat cerebral cortex. Brain Res 70: 501–505

    Article  PubMed  CAS  Google Scholar 

  28. De Groat WC (1970) The actions of γ-aminobutyric acid and related amino acids on mammalian autonomic ganglia. J Pharmac Exp Ther 172: 384–396

    Google Scholar 

  29. Demeneix BA, Desaulles E, Feltz P, Loeffler JP (1984) Dual population of GABAA and GABAb receptors in rat pars intermedia demonstrated by release of MSH caused by barium ions. Br J Pharmacol 82: 183–190

    PubMed  CAS  Google Scholar 

  30. Desarmenien M, Feltz P, Occhipinti G, Santangelo F, Schlichter R (1984) Coexistence of GABAa and GABAb receptors on AÖ and C primary afferents. Br J Pharmacol 81: 327–333

    PubMed  CAS  Google Scholar 

  31. Dunlap K (1981) Two types of γ-aminobutyric acid receptor on embryonic sensory neurones. Br J Pharmacol 74: 570–585

    Google Scholar 

  32. Dutar P, Nicoll RA (1988) A physiological role for GABAb receptors in the central nervous system. Nature 332: 156–158

    Article  PubMed  CAS  Google Scholar 

  33. Dutar P, Nicoll RA (1988) Pre- and postsynaptic GABAb receptors in the hippocampus have different pharmacological properties. Neuron 1: 585–598

    Google Scholar 

  34. Erdö SL, Bowery NG (1986) GABAergic mechanisms in the mammalian periphery. Raven, New York

    Google Scholar 

  35. Erdö SL, Kiss B (1986) Presence of GABA, glutamate decarboxylase, and GABA transaminase in peripheral tissues: a collection of quantitative data. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp5–17

    Google Scholar 

  36. Evans RH (1976) Potentiation of the effects of GABA by pentobarbitone. Brain Res 171:113–120

    Article  Google Scholar 

  37. Giotti A, Luzzi S, Spagnesi S, Zilletti L (1983) GABAa and GABAb receptormediated effects in guinea-pig ileum. Br J Pharmacol 78: 469–478

    PubMed  CAS  Google Scholar 

  38. Harrison NL (1990) On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J Physiol 422: 433–446

    PubMed  CAS  Google Scholar 

  39. Hill DR, Bowery NG (1981) 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290: 149–152

    Article  PubMed  CAS  Google Scholar 

  40. Hobbiger F (1958) Effects of γ-Aminobutyric acid on the isolated mammalian ileum. J Physiol (Lond) 142: 147–164

    CAS  Google Scholar 

  41. Jessen KR, Hills JM, Dennison ME, Mirsky R (1983) γ-aminobutyrate as an autonomic neurotransmitter. release and uptake of 3H-γ-aminobutyrate in guinea-pig large intestine and cultured enteric neurons using physiological methods and electron microscopic autoradiography. Neuroscience 10: 1427–1442

    Article  PubMed  CAS  Google Scholar 

  42. Jessen KR, Hills JM, Dennison ME, Burnstock G (1979) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature 281: 71–74

    Article  CAS  Google Scholar 

  43. Jessen KR, Mirsky R, Hills JM (1986)GABAergic neurons in the vertebrate peripheral nervous system. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 117–134

    Google Scholar 

  44. Kerr DIB, Ong J (1986), GABAergic mechanisms in the gut: their role in the regulation of gut motility. In: Erdö SL, Bowery NG. (eds) GABAergic mechanisms in the mammalian periphery. Raven, New York, pp 153–174

    Google Scholar 

  45. Krnjević K (1974) Chemical nature of synaptic transmission in vertebrates. Physiol Rev 54: 418–540

    Google Scholar 

  46. Krnjevic K, Schwartz S (1966) Is γ-aminobutyric acid an inhibitory transmitter? Nature 211: 1372–1374

    Article  PubMed  CAS  Google Scholar 

  47. Kusonoki M, Taniyama K, Tanaka C (1984) Neuronal GABA release and GABA inhibition of ACh release in guinea-pig urinary bladder. Am J Physiol 246: R502–R509

    Google Scholar 

  48. Little HJ (1984) The effects of Benzodiazepine agonists, inverse agonists and Rol5-1788 on the responses of the superior cervical ganglion to GABA in vitro. Br J Pharmacol 83: 57–68

    PubMed  CAS  Google Scholar 

  49. Maguire JJ, Fowler LJ, Bowery NG (1990) (-)Baclofen inhibits K+-evoked release of endogenous aspartate, glutamate and GABA from rat hippocampal synaptosomes. proceedings IUPHAR Congress, July, Amsterdam, 268 (abstr)

    Google Scholar 

  50. McLennan H (1959) The identification of one active component from brain extracts containing Factor I. J Physiol 146: 358–368

    PubMed  CAS  Google Scholar 

  51. Newberry NR, Gilbert MJ (1989) Pertussis toxin sensitivity of drug-induced potentials on the rat superior cervical ganglion. Eur J Pharmacol 163: 245–252

    Article  PubMed  CAS  Google Scholar 

  52. Newberry NR, Nicoll RA (1984) Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308: 450–452

    Article  PubMed  CAS  Google Scholar 

  53. Olsen RW, Tobin AJ (1990) Molecular biology of GABAa receptors. FASEB J 4: 1469–1480

    PubMed  CAS  Google Scholar 

  54. Ong J, Kerr DIB (1983) GABAa and GABAb receptor-mediated modifications of intestinal motility. Eur J Pharmacol 94: 9–17

    Article  Google Scholar 

  55. Ong J, Kerr DIB (1984) evidence for a physiological role of GABA in the control of guinea-pig intestinal motility. Neurosci Lett 50: 339–343

    Article  PubMed  CAS  Google Scholar 

  56. Paton WDM (1958) Central and synaptic transmission in the nervous system (pharmacol ogical aspects). Annu Rev Physiol 20: 431–470

    Article  PubMed  CAS  Google Scholar 

  57. Pittaluga A, Asaro D, Pellegrini G, Raiteri M (1987) Studies on [3H] GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreeeptors of GABAB type. Eur J Pharmacol 144: 45–52

    Article  PubMed  CAS  Google Scholar 

  58. Pratt GD, Knott C, Davey R, Bowery NG (1989) Characterisation of 3-aminopropyl phospinic acid as a GABAb agonist in rat brain tissue. Br J Pharmacol 96: 141P

    Google Scholar 

  59. Robbins MS, Grouse LH, Sorensen RL, Eide RP (1981) Effect of muscimol on glucose-stimulated somatostatin and insulin release from the isolated perfused rat pancras. Diabetes 30: 168–171

    Article  PubMed  CAS  Google Scholar 

  60. Schally AV, Redding TW, Arimura A, Dupont A, Linthicum GL (1977) Isolation of gamma-aminobutyric acid from pig hypothalamus and demonstration of its prolactin release-inhibiting (PIF) activity in vivo and in vitro. Endocrinology 100: 681–691

    Article  PubMed  CAS  Google Scholar 

  61. Scherer RW, Ferkany JW, Enna SJ (1988) Evidence for pharmacologically distinet subsets of GABAB receptors. Brain Res Bull 21: 439–443

    Article  PubMed  CAS  Google Scholar 

  62. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiat 122: 509–522

    PubMed  CAS  Google Scholar 

  63. Young JAC, Brown DA, Kelly JS, Schon F (1973) Autoradiographic localization of sites of 3H-γ-aminobutyric acid accumulation in peripheral autonomic ganglia. Brain Res 63: 479–486

    Article  PubMed  CAS  Google Scholar 

  64. Xu J, Wojcik WJ (1986) Gamma aminobutyric acid B receptor-mediated inhibition of adenylate cyclase in cultured cerebellar granule cells: blockade by islet-activating protein. J Pharmacol Exp Ther 239: 568–57

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bowery, N.G. (1992). GABA Receptors Inside and Outside the Brain. In: Erdö, S.L. (eds) GABA Outside the CNS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76915-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76915-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76917-7

  • Online ISBN: 978-3-642-76915-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics